- Authors:
- Lee, G. J.
- Abdel-Haleem, H.
- Boerma, R. H.
- Source: Theoretical and Applied Genetics
- Volume: 122
- Issue: 5
- Year: 2011
- Summary: Drought stress adversely affects soybean at various developmental stages, which collectively results in yield reduction. Unpredictable rainfall has been reported to contribute about 36% to variation of yield difference between the rain-fed and irrigated fields. Among the drought resistance mechanisms, drought avoidance in genotypes with fibrous roots was recognized to be associated with drought resistance in soybean. Plant introduction PI416937 was shown to possess fibrous roots and has been used as a parent in breeding programs to improve soybean productivity. Little information is available on relative contribution and chromosomal location of quantitative trait loci (QTL) conditioning fibrous roots in soybean. To identify the genomic locations and genetic bases of this trait, a recombinant inbred line population was derived from a cross between PI416937 and 'Benning'. To detect associated QTLs, phenotypic data were collected and analyzed for 2 years under rain-fed field conditions. The selective genotyping approach was used to reduce the costs and work associated with conducting the QTL analysis. A total of five QTLs were identified on chromosomes Gm01 (Satt383), Gm03 (Satt339), Gm04 (Sct_191), Gm08 (Satt429), and Gm20 (Sat_299), and together explained 51% of the variation in root score. Detected QTLs were co-localized with QTLs related to root morphology, suggesting that fibrous roots QTL may be associated with other morpho-physiological traits and seed yield in soybean. Genetic dissection of the fibrous roots trait at the individual marker loci will allow for marker-assisted selection to develop soybean genotypes with enhanced levels of fibrous roots.
- Authors:
- Brown, M. G.
- Merwin, I. A.
- Atucha, A.
- Source: HortScience
- Volume: 46
- Issue: 8
- Year: 2011
- Summary: Groundcover management systems (GMSs) are essential for fruit production, but very few long-term studies have evaluated orchard GMS sustainability. We evaluated four GMSs-pre-emergence soil-active herbicides (PreHerb), post-emergence herbicide (PostHerb), a turfgrass cover crop (Sod), and hardwood bark mulch (Mulch)-in an apple (Malus domestica Borkh.) orchard over 16 years of continuous observation. There were no consistent long-term trends in fruit yields among GMSs, although during the first 5 years, yields were lower in trees on Sod. Tree growth was greater in PostHerb and Mulch than in Sod during the first 5 years, and during the next decade, trees in Mulch plots were consistently larger than in other GMSs. Total soil nitrogen (N) and carbon (C) content, C-to-N ratios, and essential plant nutrients were much greater in the Mulch soil after 16 years of treatments. Long-term responses of trees to groundcover vegetation indicated that apple trees respond adaptively to compensate for weed and grass competition. Year-round elimination of surface vegetation with residual soil active herbicides may be unnecessary or even detrimental for orchard productivity and soil fertility in established orchards. Post-emergence herbicides that reduce weed competition primarily during the summer months may offer an optimal combination of weed suppression and soil conservation.
- Authors:
- Mengistu, A.
- Abbas, H. K.
- Fisher, D. K.
- Gillen, A. M.
- Ebelhar, M. W.
- Bellaloui, N.
- Reddy, K. N.
- Paris, R. L.
- Source: Agricultural Sciences
- Volume: 2
- Issue: 4
- Year: 2011
- Summary: Information on the effect of sulfur (S) or sulfur+nitrogen (S+N) on soybean seed composition is scarce. Thus, the objective of this study was to investigate the effects of S, and S+N fertilizers on soybean [( Glycine max (L.) Merr.)] seed composition in the Early Soybean Production System (ESPS) under irrigated (I) and nonirrigated (NI) environments. Two separate field experiments were conducted from 2005 to 2007. One experiment was irrigated, and the second experiment was nonirrigated. Under I condition, S at a rate of 44.8 kg/ha alone or with N at 112 kg/ha resulted in a consistent increase in seed protein and oleic acid concentrations, and a decrease in oil and linolenic acid concentrations compared with the control (C). For example, in 2006 and compared with the C, application of S+N increased the percentage up to 11.4% and 48.5% for protein and oleic acid, respectively. However, oil concentration decreased by 3%. Protein and oleic acid increase were accompanied by a higher percentage of leaf and seed N and S. Under NI conditions, seed protein and oleic acid concentrations were significantly higher in C than in any S or S+N treatments, but the oil and linolenic acid concentrations were significantly lower. The results indicate that specific rate of S alone or S+N combined can alter seed composition under irrigated or nonirrigated conditions. This knowledge may help plant breeders to develop and release cultivars to suit specific target locations to grow new value-added soybeans or select for specific seed composition traits under specific environmental stress factors such as drought.
- Authors:
- Gillen, A. M.
- Reddy, K. N.
- Bellaloui, N.
- Fisher, D. K.
- Mengistu, A.
- Source: American Journal of Plant Sciences
- Volume: 2
- Issue: 5
- Year: 2011
- Summary: Information on the effect of planting date and irrigation on soybean [ Glycine max (L.) Merr.] seed composition in the Early Soybean Production System (ESPS) is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, oil, fatty acids, sugars, and minerals in soybean grown under irrigated (I) and non-irrigated (NI) conditions. A 2-yr field experiment was conducted in Stoneville, MS in 2007 and 2008. Soybean was planted during second week of April (early planting) and second week of May (late planting) each year. Results showed that under irrigated condition, early planting increased seed oil (up to 16% increase) and oleic acid (up to 22.8% increase), but decreased protein (up to 6.6% decrease), linoleic (up to 10.9% decrease) and linolenic acids (up to 27.7% decrease) compared to late planting. Under I conditions, late planting resulted in higher sucrose and raffinose and lower stachyose compared with early planting. Under NI conditions, seed of early planting had higher protein (up to 4% increase) and oleic acid (up to 25% increase) and lower oil (up to10.8% decrease) and linolenic acids (up to 13% decrease) than those of late planting. Under NI, stachyose concentration was higher than sucrose or raffinose, especially in early planting. Under I, early planting resulted in lower leaf and seed B, Fe, and P concentrations compared with those of late planting. Under NI, however, early planting resulted in higher accumulation of leaf B and P, but lower seed B and P compared with those of late planting. This research demonstrated that both irrigation and planting date have a significant influence on seed protein, oil, unsaturated fatty acids, and sugars. Our results suggest that seed of late planting accumulate more B, P, and Fe than those of early planting, and this could be a beneficial gain. Limited translocation of nutrients from leaves to seed under NI is undesirable. Soybean producers may use this information to maintain yield and seed quality, and soybean breeders to select for seed quality traits and mineral translocation efficiency in stress environments.
- Authors:
- Hedtcke, J. L.
- Stoltenberg, D. E.
- Posner, J. L.
- Bernstein, E. R.
- Source: Agronomy Journal
- Volume: 103
- Issue: 4
- Year: 2011
- Summary: A major challenge that organic grain crop growers face is weed management. The use of a rye (Secale cereale L.) cover crop to facilitate no-tillage (NT) organic soybean [Glycine max (L.) Merr.] production may improve weed suppression and increase profitability. We conducted research in 2008 and 2009 to determine the effect of rye management (tilling, crimping, and mowing), soybean planting date (mid-May or early June), and soybean row width (76 or 19 cm), on soybean establishment, soil moisture, weed suppression, soybean yield, and profitability. Soybean establishment did not differ between tilled and NT treatments; and soil moisture measurements showed minimal risk of a drier soil profile in NT rye treatments. Rye mulch treatments effectively suppressed weeds, with 75% less weed biomass than in the tilled treatment by mid-July. However, by this time, NT soybean competed with rye regrowth, were deficient in Cu, and accumulated 22% as much dry matter (DM) and 28% as much N compared to the tilled treatment. Soybean row width and planting date within NT treatments impacted soybean productivity but not profitability, with few differences between mowed and crimped rye. Soybean yield was 24% less in the NT treatments than the tilled treatment, and profitability per hectare was 27% less. However, with fewer labor inputs, profitability per hour in NT rye treatments was 25% greater than in tilled soybean; in addition, predicted soil erosion was nearly 90% less. Although soybean yields were less in NT rye mulch systems, they represent economically viable alternatives for organic producers in the Upper Midwest.
- Authors:
- Source: Biology and Fertility of Soils
- Volume: 46
- Issue: 6
- Year: 2010
- Summary: Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0-7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn-soybean rotation at 7.5-45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (>2,000 m) and (ii) 1.5-2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration. However, the clay fraction of soil under native woodlot showed an indication for SOC saturation. The data presented in this study from all the three structural levels of SOC would be helpful for refining the conceptual pool definitions of the current soil organic matter prediction models.
- Authors:
- Lal, R.
- Ussiri, D. A. N.
- Trumbore, S. E.
- Mestelan, S.
- Jagadamma, S.
- Source: Biogeochemistry
- Volume: 98
- Issue: 1-3
- Year: 2010
- Summary: Accurate quantification of different soil organic carbon (SOC) fractions is needed to understand their relative importance in the global C cycle. Among the chemical methods of SOC fractionation, oxidative degradation is considered more promising because of its ability to mimic the natural microbial oxidative processes in soil. This study focuses on detailed understanding of changes in structural chemistry and isotopic signatures of SOC upon different oxidative treatments for assessing the ability of these chemicals to selectively isolate a refractory fraction of SOC. Replicated sampling (to ~1 m depth) of pedons classified as Typic Fragiudalf was conducted under four land uses (woodlot, grassland, no-till and conventional-till continuous corn [ Zea mays L.]) at Wooster, OH. Soil samples (<2 mm) were treated with three oxidizing agents (hydrogen peroxide (H 2O 2), disodium peroxodisulfate (Na 2S 2O 8) and sodium hypochlorite (NaOCl)). Oxidation resistant residues and the bulk soil from A1/Ap1 horizons of each land use were further analyzed by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and accelerator mass spectrometry to determine structural chemistry and 14C activity, respectively. Results indicated that, oxidation with NaOCl removed significantly less SOC compared to Na 2S 2O 8 and H 2O 2. The NMR spectra revealed that NaOCl oxidation preferentially removed lignin-derived compounds at 56 ppm and at 110-160 ppm. On the other hand, the SOC resistant to Na 2S 2O 8 and H 2O 2 oxidation were enriched with alkyl C groups, which dominate in recalcitrant macromolecules. This finding was corroborated by the 14C activity of residual material, which ranged from -542 to -259 per mil for Na 2S 2O 8 resistant SOC and -475 to -182 per mil for H 2O 2 resistant SOC as compared to relatively greater 14C activity of NaOCl resistant residues (-47 to 61 per mil). Additionally, H 2O 2 treatment on soils after light fraction removal was more effective in isolating the oldest ( 14C activity of -725 to -469 per mil) SOC fraction. The Delta 14C signature of SOC removed by different oxidizing agents, calculated by mass balance, was more or less similar irrespective of the difference in labile SOC removal efficiency. This suggests that SOC isolated by many fractionation methods is still a mixture of much younger and older material and therefore it is very important that the labile SOC should be completely removed before measuring the turnover time of stable and refractory pools of SOC.
- Authors:
- Kadasrivenkata, H.
- Kapanigowda, M.
- Stewart, B. A.
- Howell, T. A.
- Baumhardt, R. L.
- Source: Field Crops Research
- Volume: 118
- Issue: 2
- Year: 2010
- Summary: Under dryland conditions of the Texas High Plains, maize ( Zea mays) production is limited by sparse and erratic precipitation that results in severe water stress particularly during grain formation. When plant populations are reduced to 2.0-3.0 plants m -2 to conserve soil water for use during grain filling, tillers often form during the vegetative growth and negate the expected economic benefit. We hypothesized that growing maize in clumps spaced 1.0 m apart would reduce tiller formation, increase mutual shading among the plants, and conserve soil water for grain filling that would result in higher grain yield. Studies were conducted during 2006 and 2007 at Bushland, TX. with two planting geometries (clump vs. equidistant), two irrigation methods (low-energy precision applicator, LEPA, and low-elevation spray applicator, LESA) at three irrigation levels (dryland, 75 mm and 125 mm in 2006; and dryland, 50 mm and 100 mm in 2007). For dryland plots in 2007, clump plants had only 0.17 tillers (0.66 tillers m -2) compared with 1.56 tillers per plant (6.08 tillers m -2) for equidistant spacing. Tillers accounted for 10% of the stover for the equidistant plants, but less than 3% of the grain. Clump planting produced significantly greater grain yields (321 g m -2 vs. 225 g m -2 and 454 g m -2 vs. 292 g m -2 during 2006 and 2007, respectively) and Harvest Indexes (0.54 vs. 0.49 and 0.52 vs. 0.39 during 2006 and 2007, respectively) compared with equidistant plants in dryland conditions. Water use efficiency (WUE) measurements in 2007 indicated that clumps had a lower evapotranspiration (ET) threshold for initiating grain production, but the production function slopes were 2.5 kg m -3 for equidistant treatments compared to 2.0 kg m -3 for clump treatments. There was no yield difference for method of irrigation on water use efficiency. Our results suggest that growing maize in clumps compared with equidistant spacing reduced the number of tillers, early vegetative growth, and Leaf Area Index (LAI) so that more soil water was available during the grain filling stage. This may be a useful strategy for growing maize with low plant populations in dryland areas where severe water stress is common.
- Authors:
- Lindau, C.
- Bollich, P.
- Bond, J.
- Source: Communications in Soil Science and Plant Analysis
- Volume: 41
- Issue: 13
- Year: 2010
- Summary: This field study was conducted over a 3-year time period in Louisiana to determine which soybean ( Glycine max L.) tillage practice discharged the least amount of nutrients and sediment from experimental plots after rainfall/runoff events. In addition, tillage effect on soybean yield was investigated. Experimental design consisted of three Louisiana soybean tillage treatments [conventional (CT), stale seedbed (SS), and no-till (NT)] with three replications per treatment. A randomized complete-block design was used for statistical analysis. Each of the nine treatment plots measured 27.1 m by 106.4 m and was equipped with an automatic runoff sampler integrated with a continuously recording flow meter and H-flume. Composite runoff samples were analyzed for ammonium N (NH 4+-N), nitrate N (NO 3--N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), orthophosphorus (ortho-P), total organic carbon (TOC), and total solids (TS). Analyte discharge (kg ha -1) per rainfall/runoff event was calculated using runoff concentrations and total runoff flows (L). Statistical analysis showed that discharge treatment means were highly variable and that tillage practice had little or no effect on total runoff and on the amount of N and P discharged from treatment plots. Treatment differences over the study were nonsignificant for all N and P forms 93% and 61% of the time, respectively. Only 21% of the time was mean treatment total runoff significant ( P≤0.05). Stale seedbed and NT practices reduced sediment discharges over segments of the soybean growing seasons. Total organic carbon discharge from the NT plots was significantly greater 42% of the time. Soybean yields were highly variable within and between treatments and strongly influenced by rainfall, disease, and insects.
- Authors:
- Wallender, W. W.
- Burger, M.
- Horwath, W. R.
- Mailapalli, D. R.
- Source: Agricultural Water Management
- Volume: 98
- Issue: 1
- Year: 2010
- Summary: Farming practices, including tillage, cover cropping and residue management can have profound effects on the efficiency of irrigation practices. The effects of three field management practices (FMPs) standard tillage and winter-fallow (ST), standard tillage and winter-cover crop (STCC), and no-till and winter-fallow (NT) and two field lengths (122 and 366 m) on runoff and export of dissolved organic carbon (DOC) were investigated in a furrow-irrigated cropping system over two years. The residue cover was 40, 32 and 11% in 2007, and 58, 61 and 11% in 2008 for STCC, NT and ST, respectively. Furrow irrigation experiments were conducted prior to crop planting following the cover crop. The inflow was kept constant across all treatments, and infiltration and runoff were estimated using a volume balance model (VBM). The DOC concentration tended to increase with increasing field length, but did not differ among the FMPs. A threefold increase in field length increased infiltration by 40%, and decreased runoff by 60-90% and DOC export by 65-83%. In both years, infiltration was highest in STCC. In NT, infiltration was lowest in 2007, which was likely due to soil sealing, and intermediate among the three FMPs in 2008 perhaps due to the increase in residue cover in the second year. The DOC budget analysis showed that fields and FMPs acted as DOC sinks exporting less DOC than was applied in the irrigation water. The results suggest that longer furrows and STCC were greater DOC sinks compared to ST and shorter field practices. The VBM, as applied in this study to estimate infiltration and runoff, could be used to predict optimal field length to minimize runoff and promote DOC adsorption to soil within the constraints of water quality and availability and soil conditions.