- Authors:
- Year: 2009
- Summary: The Forest Project Protocol (FPP) provides requirements and guidance for quantifying the net climate benefits of activities that sequester carbon on forestland. The protocol provides project eligibility rules; methods to calculate a project's net effects on greenhouse gas (GHG)emissions and removals of CO2 from the atmosphere ("removals"); procedures for assessing the risk that carbon sequestered by a project may be reversed (i.e. released back to the atmosphere); and approaches for long term project monitoring and reporting. The goal of this protocol is to ensure that the net GHG reductions and removals caused by a project are accounted for in a complete, consistent, transparent, accurate, and conservative manner and may therefore be reported to the Climate Action Reserve (Reserve) as the basis for issuing carbon offset credits (called Climate Reserve Tonnes, or CRTs).
- Authors:
- Source: ClimateCHECK
- Year: 2009
- Summary: From exec summary: This Consultation Report describes the development to date of the Nitrous Oxide Emissions Reduction Protocol ("NERP"), designed on the framework provided by the Right Product @ Right Rate, Right Time, Right Place™ stewardship model of the Canadian Fertilizer Institute. The process for development includes a Technical Background Document, a Science Discussion document, and a Consultation Workshop. Following the decisions of the Consultation Workshop, the main elements of the NERP are determined. The eligibility requirements of the NERP are designed according to the criteria of the Alberta Offsets System and Canada's Offset System. The GHG emissions for the baseline scenario and project condition are calculated using the country-specific methodology used in Canada's National Inventory Report. The scope of the NERP is limited to (1) on-farm reductions of (2) emissions associated with quantification categories fertilizer, manure, residues, and irrigation. The baseline is determined according to three years of farm-level data. The essential component for participation in the NERP is defined as the implementation of a 4R N stewardship plan, as assured by (1) general guidance in the NERP confirmed by third party verification, (2) detailed design instructions in the NERP, (3) conformity with a recommended predictive model, or (4) retaining services of an approved consulting professional. The fertilizer management practices comprising the Basic, Intermediate, and Advanced levels of the NERP are listed. And, the reduction modifiers associated with the levels of the NERP are proposed.
- Authors:
- Del Grosso, S. J.
- Halvorson, A. D.
- Alluvione, F.
- Source: Journal of Environmental Quality
- Volume: 38
- Issue: 5
- Year: 2009
- Summary: Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux. from semiarid irrigated soils are poorly understood. We evaluated effects of. (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a Continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris W; 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation Under NT soil management [corn-barley (NTCB); continuous corn (NT-CC); corn-dry bean (NI-CDb)] on CO2 and CH4 flux from a clay loam soil. Carbon dioxide and CH4 fluxes were monitored one to three times per week using vented nonsready state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO2 emissions relative to CT (NT 2.08 Mg CO2-C ha(-1); CT 2.41 Mg CO2-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO2 fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO2-C ha(-1)d(-1) respectively). Growing season CH4 emissions were higher in NT (20.2 g CH4 ha(-1)) than in CT (1.2 g CH4 ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH4 flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH4 oxidation capacity Of this clay learn soil relative to CT plowed and fertilized soil.
- Authors:
- California Air Resources Board
- Source: California Cap-and-Trade Regulation
- Year: 2009
- Authors:
- Source: Iowa Ag Review
- Volume: 15
- Issue: 3
- Year: 2009
- Summary: An overview of costs and benefits to agriculture from climate change policy.
- Authors:
- Nelson, K. A.
- Udawatta, R. P.
- Motavalli, P. P.
- Bailey, N. J.
- Source: Agroforestry Systems
- Volume: 77
- Issue: 2
- Year: 2009
- Summary: The potential for agricultural soils to act as a sink and sequester carbon (C) or a source and emit carbon dioxide (CO2) is largely dependent upon the agricultural management system. The establishment of permanent vegetation, such as trees and grass contour buffer strips, may cause accumulation of above- and below-ground C over time, thereby acting as a sink for tropospheric CO2. However, the effects of contour grass strips and grass-tree strips (agroforestry) on soil CO2 emissions have not been extensively studied in row-crop watersheds in the temperate regions. The objective of this study was to determine the effects of agroforestry and grass contour buffer strips and landscape position on soil surface efflux rate of CO2 in three adjacent agricultural watersheds with claypan soils in northeast Missouri. The three watersheds were in a corn-soybean rotation, and contained (1) cropped only (CR), (2) cropped with grass contour strips (GR), or (3) cropped with tree-grass contour strips (AF) management systems. Soil surface CO2 efflux was measured throughout the 2004 growing season at the upper (UBS), middle (MBS), and lower (LBS) backslope landscape positions within the three watersheds. The cumulative soil CO2 production was lowest in the CR (0.9 kg CO2-C m-2) compared to the AF (1.5 kg CO2-C m-2) and GR watersheds (1.5 kg CO2-C m-2). The lower backslope position (1.6 kg CO2-C m-2) across all three watersheds produced 32 and 40% greater cumulative soil CO2 than the upper and middle backslope positions, respectively. A 72-day incubation study determined the effects of 40, 60, 80, and 100% soil water-filled pore space (WFPS) and N rate (0 and 1.39 g KNO3 kg soil-1) on soil CO2 efflux from bulk soil collected under each management system. The cumulative CO2 production was highest in the grass soil (1,279 mg CO2-C kg soil-1) compared to the agroforestry (661 mg CO2-C kg soil-1) and cropped (483 mg CO2-C kg soil-1) soils regardless of WFPS and N rate. The highest cumulative CO2 production for the grass soil (1,279 mg CO2-C kg soil-1) occurred at 80% WFPS, and was approximately 2 to 2.6 times greater than the agroforestry and cropped soils at 80% WFPS. The results of this study indicate that conservation management practices, such as grass and grass-tree contour buffer strips, and landscape position affect soil surface CO2 production and accumulation of soil organic C that may influence soil C sequestration.
- Authors:
- Source: Critical Issue Report: The First Thirteen Years
- Year: 2009
- Summary: Th is report explores the impact of the adoption of genetically engineered (GE) corn, soybean, and cotton on pesticide use in the United States, drawing principally on data from the United States Department of Agriculture. Th e most striking finding is that GE crops have been responsible for an increase of 383 million pounds of herbicide use in the U.S. over the first 13 years of commercial use of GE crops (1996-2008).
- Authors:
- Source: Soil Science Society of America Journal
- Volume: 73
- Issue: 2
- Year: 2009
- Summary: Franzluebbers (2009) is right about the need for a more intensive soil sampling, "repeated sampling with time,"and "stratified sampling" as well as for the use of multiple fields and collection of larger number of pseudoreplicates to overcome the high field variability in soil organic carbon (SOC) pools within each Major Land Resource Area (MLRA). The selected fields were representative of each MLRA in terms of soil type, slope, and management, but it is correct that a single soil would not capture all the variability in soil and management for the whole MLRA. This study was not intended to relate the data from the single soil to the whole MLRA but rather to emphasize the differences in SOC sequestration rates among the three management systems within each soil.
- Authors:
- Urquiaga, S.
- Alves, B. J. R.
- Jantalia, C. P.
- Boddey, R. M.
- Source: Soil Science Society of America Journal
- Volume: 73
- Issue: 2
- Year: 2009
- Summary: Blanco-Canqui and Lal (2008) present data on soil organic carbon (SOC) concentrations from soils managed under no-tillage (NT) or plow-tillage (PT) from samples taken from studies of paired fields at 11 (MLRA) sites in three states of the USA. The results seem to show extremely large annual changes in soil organic C stocks between NT and PT to a depth of 60 cm, ranging from +3.75 to -6.65 Mg ha-1 yr-1 (Table 2). However, these values are far greater, and not compatible with, the data displayed in Fig. 2, nor the total stocks of soil N and the C/ N ratio displayed in Tables 3 and 4, respectively. However, the data displayed taken from seven studies in the literature (a total of 16 comparisons) are correctly reported as annual changes. Table 2 should thus be corrected as shown here (Table 1).
- Authors:
- Andres, R. J.
- Marland, G.
- Boden, T. A.
- Source: Trends: A Compendium of Data on Global Change
- Year: 2009