- Authors:
- Muchaonyerwa, P.
- Chiduza, C.
- Dube, E.
- Source: Soil & Tillage Research
- Volume: 123
- Year: 2012
- Summary: A study was conducted to determine the effects of oat (Avena sativa) and grazing vetch (Vicia dasycapa) winter cover crops and fertilization regimes on soil organic matter (SOM) in an irrigated maize-based (Zea mays L.) conservation agriculture (CA) system following four years of continuous practice. Separate plots of oat and grazing vetch cover crops were grown in winter and then maize was planted in all plots in the following summer season. The four fertilization regimes used were: (i) fertilizer applied to the cover crops and the maize crop (F1), (ii) fertilizer applied to cover crops only (F2), (iii) fertilizer applied to the maize crop only (F3) and (iv) no fertilizer applied (F4). Control plots (weedy fallows) were included and the treatments were laid out in a randomized complete block design with three replications. Soil samples from 0-5, 5-20 and 20-50 cm depths were analyzed for total SOM, particulate organic matter (POM) fractions, hot water soluble C (HWC) and C-associated with water stable macro- and micro-aggregates (WSAC). While total SOM was more concentrated in the 0-5 cm soil depth across treatments, a lack of maize fertilization (F2 and F4 regimes) significantly (P
- Authors:
- Sparks, R.
- Dillon, M.
- Delgado, J. A.
- Essah, S. Y. C.
- Source: HortTechnology
- Volume: 22
- Issue: 2
- Year: 2012
- Summary: There is the need to develop potato (Solanum tuberosum) cropping systems with higher yields and crop quality. Field studies were conducted with cover crops grown under limited irrigation (
- Authors:
- Ward, P. R.
- Cordingley, N.
- Flower, K. C.
- Weeks, C.
- Source: Field Crops Research
- Volume: 132
- Year: 2012
- Summary: Cover crops have been successfully integrated into conservation agriculture systems in many parts of the world. They are primarily used to provide surface cover as well as to improve soil fertility and suppress weeds. Black oat (Avena strigosa Schreb.) is a widely used cereal cover crop with a rapid growth and high biomass production. It is being trialled as a cover crop for conservation agriculture systems in southwestern Australia, which has a Mediterranean climate with a short winter growing season and where terminal drought is common. Only one crop can be grown in a year and, as such, the long term benefits of including a cover crop in this system must outweigh the loss in income by not growing a cash crop. This study, which was part of a larger conservation agriculture cropping systems trial, examined the effect of different crop sequences, which included oat cover crops and grass pasture, on soil nitrogen mineralisation and weed control. A related paper in this Special Issue examined the effect of cover crops on the soil water balance. We hypothesised that the inclusion of high-biomass oat cover crops in a cereal-dominated cropping system would (i) result in less immobilisation of soil nitrogen compared with that of harvested cereals, and (ii) significantly improve the weed control. We show that soil N mineralisation following oat cover crops was similar to that following wheat and barley. Therefore, cash crops grown after oat cover crops would require similar levels of nitrogen to those grown after harvested cereals. Oat cover crops and grass pasture were found to be very effective in controlling weeds, even in continuous cereal rotations. Two consecutive years of cover crop were required for good annual ryegrass (Lolium rigidum Gaud.) control in a predominantly cereal rotation. Timing of when the cover crops were killed by herbicide was crucial for good weed control, as failure to prevent weed seed set resulted in significantly reduced weed control. Also, late killing of the cover crop reduced soil water storage. The inclusion of an oat cover crop in the rotation reduced the three-year average gross margin; however, the profitability of these crops needs to be evaluated over a longer period. To date, managed pasture, with herbicide control of weed seed set, appears to be a better option than oat cover crops because of the relatively low cost and increased soil water storage. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Khamseh, A. R. M.
- Ghotbi, M.
- Dehaghi, M. A.
- Rouhi, H. R.
- Ghotbi, M.
- Wahsha, M.
- Source: International Journal of AgriScience
- Volume: 2
- Issue: 1
- Year: 2012
- Summary: Growing cover crops with allopathic characteristics is a way to biologically control the weed P. aegyptiaca. Allelochemicals are present in almost all plants and in many plant tissues including leaves, stems, flowers, fruits, seeds and roots. This experiment was conducted to compare effects of allopathic crops on the germination rate of P. aegyptiaca seeds. Weed infestations were tested in Polyethylene (PE) bags and pot experiments. 27 crops, of different families, were grown in 2-Kg pots containing sterile soil infested with 0.6 g of seed. The control pots contained only 0.6 g of P. aegyptiaca seeds. Two month-old plants were incorporated into the soil from the surface and then tomato seedlings ( Lycopersicum esculentum Mill.) were planted in the pots. Cotton (Malvaceae family) was among the cultured plants, used as a trap crop to thoroughly eradicate the threat of P. aegyptiaca. The most significant reduction in broomrape shoot and capsule number was demonstrated in those pots that contained cotton and sorghum, and in those that contained tomato; tomato dry weight significantly augmented. The results from the PE bags were in parallel with those of the pots. The germination rates of P. aegyptiaca (%) next to the plants in PE bags ranged from 8.333% to 55.333% respectively in millet and pepper. Except for sunflower, vetch, soy bean, chick pea, sainfoin, alfalfa, zucchini and sesame, which demonstrated catch crop, activity, the other cultivated plants; corn, oat, beet, sugar beet, triticale, caster-oil plant, millet, fiber flax, pepper, cotton and sorghum were determined as trap crops for the weed P. aegyptiaca.
- Authors:
- Carbonell-Bojollo, R.
- Ordóñez-Fernández, R.
- Veroz-González, O.
- González-Sáncheza, E. J.
- Gil-Ribes, J. A.
- Source: Soil & Tillage Research
- Volume: 122
- Year: 2012
- Summary: Conservation agriculture (CA) helps to mitigate climate change. Firstly, the modifications introduced by CA on the carbon dynamics in the soil directly result in an increase of the carbon (C) in the soil fraction. Secondly, CA drastically reduces C oxidation processes by diminishing the mechanical manipulation of the soil. Spain's position in relation to the Kyoto Protocol must be improved, as is one of the European countries in a non-compliance situation. With the aim of providing knowledge about the potential of CA as C sink in Spain, 29 articles on this subject were reviewed. According to 2010 CA uptake, the results demonstrated that conservation practices have the potential to promote the fixation in soil of about 2 Gg year(-1) more C than traditional tillage (TT) systems. As indicated by Tebrugge (2001), 3.7 Mg of CO2 are generated from 1 Mg of C through microbial oxidation processes taking place in the ground, meaning that through CA almost 7.5 Gg of CO2 could be sequestered from the atmosphere every year until the equilibrium is reached. C fixation was found to be irregular over time. C fixation rates were high in newly implemented systems during the first 10 years, reaching top values of 0.85 Mg ha(-1) year(-1) for no-tillage (NT) and 1.54 Mg ha(-1) year(-1) for cover crops (CC) implemented in-between perennial tree rows. After those first 10 years, it followed a period of lower but steady growth until equilibrium was reached. Nevertheless, C decreases of 0.16 Mg ha(-1) year(-1) in the first 10 years may be expected when practicing minimum tillage (MT). C sequestration rate resulted higher in case farmers do crop rotations in NT and MT rather than monoculture. In woody crops, studies reported higher C fixation values for native species when compared to sowed CC. Also, climate conditions seem to affect C sequestration rate in Spain. Although in NT differences observed between maritime and continental climates are not pronounced, as approximately 25% of the values recorded in both climates are equal, in the case of MT about 75% of maritime climate values result higher than the continental situation. (c) 2012 Elsevier B.V. All rights reserved.
- Authors:
- Coquet, Y.
- Justes, E.
- Benoit, P.
- Alletto, L.
- Source: Agriculture, Ecosystems & Environment
- Volume: 153
- Year: 2012
- Summary: Water drainage and herbicide degradation and leaching were studied during four years in a continuous maize field managed with two tillage systems and two types of fallow periods. The tillage systems consisted of either a conventional practice with mouldboard ploughing (28 cm-depth) or a conservation practice with superficial tillage (
- Authors:
- Vogt, G. A.
- da Veiga, M.
- Balbinot Junior, A. A.
- Spagnollo, E.
- Source: Ciência Rural
- Volume: 42
- Issue: 3
- Year: 2012
- Summary: The objective of this study was to evaluate in the fifth year of experimentation, the effect of winter soil uses on residual straw on the soil, physical and chemical soil attributes and grain yield of common bean cultivated in succession. An experiment was carried out in the North Plateau of Santa Catarina State, Brazil, from May 2006 to April 2011. Five winter soil uses were investigated: 1) multicropping with black oat + ryegrass + common vetch without grazing (multicropping cover); 2) the same multicropping, with grazing and 100kg ha(-1) of nitrogen year(-1), applied during the growing period (pasture with N); 3) the same multicropping, with grazing and without nitrogen fertilization (pasture without N); 4) oil seed radish, without grazing (oil seed radish); and 5) natural vegetation, without grazing (fallow). In the fifth year of experimentation, multicropping cover treatment inputted greater straw on the soil, but it was not observed expressive differences in soil attributes among the five winter soil uses. Cover crops, annual pasture and winter fallow did not affect the grain yield of common bean cultivated in succession.
- Authors:
- Heinz, R.
- Garbiate, M.
- Tadeu Vitorino, A.
- Viegas Neto, A.
- de Sousa Mota, L.
- Pereira Correia, A.
- Source: Ciencia Rural
- Volume: 41
- Issue: 9
- Year: 2011
- Summary: This study aimed to evaluate the decomposition and nutrient release from crop residues of fodder radish and crambe in the implementation of no-tillage system. The experiment was conducted in a Distroferric Red Latossol with 762g kg(-1) of clay. The experimental design was randomized blocks with four replications. The treatments were applied in split plots, considering the species of cover crops (radish and crambe) as the main plots and harvest dates of decomposition bags (0, 15, 30, 45, 60, 75 days after management) as subplots. The cover crops were treated 60 days after management, in full bloom. Radish presented a dry mass production of 5586kg ha(-1) and crambe of 2688kg ha(-1). The kinetics of residue decomposition had a behavior similar to the dynamics of nutrient release, with an initial rapid phase followed by a slower one. The K, P and Mg are released more quickly for subsequent crops. The increased speed of nutrients release by crops occurred around 15 days after the biomass management.
- Authors:
- Tetu, T.
- Lea, P. J.
- Dubois, F.
- Hirel, B.
- Source: Sustainability
- Volume: 3
- Issue: 9
- Year: 2011
- Summary: In this review, we present the recent developments and future prospects of improving nitrogen use efficiency (NUE) in crops using various complementary approaches. These include conventional breeding and molecular genetics, in addition to alternative farming techniques based on no-till continuous cover cropping cultures and/or organic nitrogen (N) nutrition. Whatever the mode of N fertilization, an increased knowledge of the mechanisms controlling plant N economy is essential for improving NUE and for reducing excessive input of fertilizers, while maintaining an acceptable yield and sufficient profit margin for the farmers. Using plants grown under agronomic conditions, with different tillage conditions, in pure or associated cultures, at low and high N mineral fertilizer input, or using organic fertilization, it is now possible to develop further whole plant agronomic and physiological studies. These can be combined with gene, protein and metabolite profiling to build up a comprehensive picture depicting the different steps of N uptake, assimilation and recycling to produce either biomass in vegetative organs or proteins in storage organs. We provide a critical overview as to how our understanding of the agro-ecophysiological, physiological and molecular controls of N assimilation in crops, under varying environmental conditions, has been improved. We have used combined approaches, based on agronomic studies, whole plant physiology, quantitative genetics, forward and reverse genetics and the emerging systems biology. Long-term sustainability may require a gradual transition from synthetic N inputs to legume-based crop rotation, including continuous cover cropping systems, where these may be possible in certain areas of the world, depending on climatic conditions. Current knowledge and prospects for future agronomic development and application for breeding crops adapted to lower mineral fertilizer input and to alternative farming techniques are explored, whilst taking into account the constraints of both the current world economic situation and the environment.
- Authors:
- Beasley, J. P.,Jr.
- Tubbs, R. S.
- Lee, R. D.
- Grey, T. L.
- Jackson, J. L.
- Source: Peanut Science
- Volume: 38
- Issue: 1
- Year: 2011
- Summary: Most peanut ( Arahcis hypogaea L.) production occurs under highly intensive conventional tillage systems. With recent volatility in input prices, reducing tillage trips is a viable way of reducing production costs. However, growers can experience yield loss when switching from conventional tillage to strip-tillage in peanut on certain soil types due to the lack of an elevated bed at harvest time. Studies were conducted to compare standard strip-till with strip-till on two-row raised beds as well as rip and beds prepared in the fall. Comparisons were made on a coarse textured soil at Tifton, GA and a fine textured soil at Plains, GA. The three bed types, with and without wheat cover, were evaluated over two years at both locations. No effects of cover or interactions with bed type were present. At Plains, the rip and bed and raised bed reduced digging losses by 62 and 47%, respectively. Soil compaction within the harvest depth was reduced by 3.3 and 4.7 times by the raised bed and rip and bed, respectively compared to flat strip-till. The rip and bed increased peanut yield by 465 kg ha -1 over flat bed. At Tifton, no significant differences in yield or digging losses occurred between tillage methods. Soil compaction in the harvest depth was reduced by 1.9 and 2.5 times by raised bed and rip and bed, respectively on this coarse soil type. Reduced compaction and digging losses along with increased yield suggest bedding is more important on finer textured soils.