• Authors:
    • Bueckert, R.
    • Gan. Y.T.
    • Liu, L. P.
    • Rees, K. van
  • Source: Field Crops Research
  • Volume: 122
  • Issue: 3
  • Year: 2011
  • Summary: Oilseed and pulse crops have been increasingly used to diversify cereal-based cropping systems in semiarid environments, but little is known about the root characteristics of these broadleaf crops. This study was to characterize the temporal growth patterns of the roots of selected oilseed and pulse crops, and determine the response of root growth patterns to water availability in semiarid environments. Canola ( Brassica napus L.), flax ( Linum usitatissimum L.), mustard ( Brassica juncea L.), chickpea ( Cicer arietinum L.), field pea ( Pisum sativum L.), lentil ( Lens culinaris), and spring wheat ( Triticum aestivum L.) were tested under high- (rainfall+irrigation) and low- (rainfall only) water availability conditions in southwest Saskatchewan, in 2006 and 2007. Crops were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length that were installed in the field prior to seeding. Roots were sampled at the crop stages of seedling, early-flower, late-flower, late-pod, and physiological maturity. On average, root length density, surface area, diameter, and the number of tips at the seedling stage were, respectively, 41, 25, 14, and 110% greater in the drier 2007 than the corresponding values in 2006. Root growth in all crops progressed rapidly from seedling, reached a maximum at late-flower or late-pod stages, and then declined to maturity; this pattern was consistent under both high- and low-water conditions. At the late-flower stage, root growth was most sensitive to water availability, and the magnitude of the response differed between crop species. Increased water availability increased canola root length density by 70%, root surface area by 67%, and root tips by 79% compared with canola grown under low-water conditions. Water availability had a marginal influence on the root growth of flax and mustard, and had no effect on pulse crops. Wheat and two Brassica oilseeds had greater root length density, surface area and root tips throughout the entire growth period than flax and three pulses, while pulse crops had thicker roots with larger diameters than the other species. Sampling roots at the late-flower stage will allow researchers to capture best information on root morphology in oilseed and pulse crops. The different root morphological characteristics of oilseeds, pulses, and wheat may serve as a science basis upon which diversified cropping systems are developed for semiarid environments.
  • Authors:
    • Bueckert, R.
    • Gan, Y. T.
    • Liu, L. P.
    • Rees, K. van
  • Source: Field Crops Research
  • Volume: 122
  • Issue: 3
  • Year: 2011
  • Summary: Root distribution patterns in the soil profile are the important determinant of the ability of a crop to acquire water and nutrients for growth. This study was to determine the root distribution patterns of selected oilseeds and pulses that are widely adapted in semiarid northern Great Plains. We hypothesized that root distribution patterns differed between oilseed, pulse, and cereal crops, and that the magnitude of the difference was influenced by water availability. A field experiment was conducted in 2006 and 2007 near Swift Current (50°15′N, 107°44′W), Saskatchewan, Canada. Three oilseeds [canola ( Brassica napus L.), flax ( Linum usitatissimum L.), mustard ( Brassica juncea L.)], three pulses [chickpea ( Cicer arietinum L.), field pea ( Pisum sativum L.), lentil ( Lens culinaris)], and spring wheat ( Triticum aestivum L.) were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length which were pushed into soil with a hydraulic system. Crops were evaluated under low- (natural rainfall) and high- (rainfall+irrigation) water conditions. Vertical distribution of root systems was determined at the late-flowering stage. A large portion (>90%) of crop roots was mainly distributed in the 0-60 cm soil profile and the largest amount of crop rooting took place in the top 20 cm soil increment. Pulses had larger diameter roots across the entire soil profile than oilseeds and wheat. Canola had 28% greater root length and 110% more root tips in the top 10 cm soil and 101% larger root surface area in the 40 cm soil under high-water than under low-water conditions. In 2007, drier weather stimulated greater root growth for oilseeds in the 20-40 cm soil and for wheat in the 0-20 cm soil, but reduced root growth of pulses in the 0-50 cm soil profile. In semiarid environments, water availability did not affect the vertical distribution patterns of crop roots with a few exceptions. Pulses are excellent "digging" crops with a strong "tillage" function to the soil due to their larger diameter roots, whereas canola is more suitable to the environment with high availability of soil water that promotes canola root development.
  • Authors:
    • Moreno, F.
    • Muñoz-Romero, V.
    • López-Bellido, L.
    • López-Bellido, R. J.
    • Melero,S.
    • Murillo, J. M.
  • Source: Soil & Tillage Research
  • Volume: 114
  • Issue: 2
  • Year: 2011
  • Summary: Studies of the impacts of the interactions of soil agricultural practices on soil quality could assist with assessment of better management to establish sustainable crop production system. The main objective was to determine the long-term effects of tillage system, crop rotation and N fertilisation on soil total N and organic C (SOC), labile fractions of organic matter (water soluble carbon, WSC, and active carbon, AC), nitrate content, and soil enzymatic activities (dehydrogenase (DHA), beta-glucosidase (Glu) and alkaline phosphatase (AP)) at four different soil depths (0-5, 5-10, 10-30 and 30-50 cm), in a Mediterranean dryland Vertisol in SW Spain. Tillage systems were conventional tillage (CT) and no tillage (NT). Crop rotations were wheat-sunflower (WS), wheat-chickpea (WC), wheat-faba bean (WFb), wheat-fallow (WF) and continuous wheat (WW). Nitrogen fertiliser rates were 0, 50 and 150 kg N ha(-1). The different crop rotation systems had a great influence in soil C and N fractions and enzymatic activities. In general, the SOC. total N. WSC, and beta-glucosidase contents were higher in the no tillage system than in conventional tillage system in the wheat-wheat and in the wheat-faba bean rotations at upper layer (0-5 cm), while the lowest ones were obtained in the wheat-fallow rotation in both tillage systems. Carbon and N fractions, calculated by volumetric soil, showed an increase with depth in both tillage systems and in all crop rotations, which could be related to the increase of soil bulk density and soil mass with depth. The highest N fertiliser rate increased most of soil variables, especially nitrate content at deeper layers, thereby precautions should be taken with long-term N fertilisation to avoid leaching of nitrates below the tillage layer. With the exception of wheat-fallow rotation, slightly greater grain and above-ground biomass yields were obtained for wheat in NT, especially at 150 kg N ha(-1). Combination of NT with any biannual rotation except fallow could be an adequate sustainable management in order to improve soil quality of Vertisols, under our conditions. (C) 2011 Elsevier B.V. All rights reserved.
  • Authors:
    • Canaday, C. H.
    • Little, C. R.
    • Chen, P.
    • Rupe, . B.
    • Wrather, A. J.
    • Shannon, G. J.
    • Bond, J. P.
    • Arelli, P. A.
    • Mengistu, A.
    • Newman, M. A.
    • Pantalone, V. R.
  • Source: Plant Health Progress
  • Issue: September
  • Year: 2011
  • Summary: Charcoal rot, caused by Macrophomina phaseolina, significantly reduces yield in soybean more than most other diseases in the midsouthern United States. There are no commercial genotypes marketed as resistant to charcoal rot. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V genotypes were evaluated for M. phaseolina between 2006 and 2008 in a non-irrigated, no-till field that had been artificially infested for three years. There was significant variation in root colonization among genotypes and years, indicating the value of screening genotypes over multiple years. Based on CFUI there was no genotype that was consistently immune to charcoal rot each year. However, there were a total of six genotypes (one genotype in MG III, one in Late MG IV, and four in MG V) that were identified as moderately resistant. Some of the commercial and public genotypes were resistant to M. phaseolina at levels equal to or greater than the standard DT97-4290, a moderately resistant cultivar. The genotypes identified as having moderate resistance across the three years could be useful as sources for developing resistant soybean genotypes.
  • Authors:
    • Mengistu, A.
    • Bellaloui, N.
    • Ray, J. D.
    • Smith, J. R.
  • Source: Plant Disease
  • Volume: 95
  • Issue: 9
  • Year: 2011
  • Summary: The seasonal progress of charcoal rot (caused by Macrophomina phaseolina) was measured over two growing seasons in four separate experiments: irrigated infested, irrigated non-infested, non-irrigated infested, and non-irrigated noninfested. Disease was assessed at V5, R1, R3, R5, R6, and R7 growth stages based on colony forming units (CFU) of M. phaseolina recovered from the lower stem and root tissues and the area under the disease progress curve (AUDPC). The population density of M. phaseolina increased slowly from the V5 to R6 growth stages and then rapidly from the R6 to R7 growth stages for all genotypes in all four experiments. Yield loss due to charcoal rot ranged from 6 to 33% in irrigated environments. The extent of yield loss was affected by severity of charcoal rot, which in turn was affected by year. Yield loss due to charcoal rot was consistently measured in all paired comparisons in irrigated environments, suggesting that charcoal rot can be an important disease in irrigated environments. Disease severity based on CFU accounted for more yield loss variation (42%) than did the AUDPC (36%) when used to assess disease. Growth stage R7 was found to be the optimum stage for assessing disease using CFU. In addition, screening soybean genotypes under irrigation environment may have utility in breeding programs where there is a need for evaluating soybean genotypes for both disease resistance and yield.
  • Authors:
    • Stroosnijder, L.
    • Nyakudya, I. W.
  • Source: Agricultural Water Management
  • Volume: 98
  • Issue: 10
  • Year: 2011
  • Summary: Maize ( Zea mays L.), the dominant and staple food crop in Southern and Eastern Africa, is preferred to the drought-tolerant sorghum and pearl millet even in semi-arid areas. In semi-arid areas production of maize is constrained by droughts and poor rainfall distribution. The best way to grow crops in these areas is through irrigation, but limited areal extent, increasing water scarcity, and prohibitive development costs limit the feasibility of irrigation. Therefore, there is need for a policy shift towards other viable options. This paper presents daily rainfall analysis from Rushinga district, a semi-arid location in Northern Zimbabwe. The purpose of the rainfall analysis was to assess opportunities and limitations for rainfed maize production using 25 years of data. Data was analysed using a variety of statistical methods that include trend analysis, t-test for independent samples, rank-based frequency analysis, Spearman's correlation coefficient and Mann-Whitney's U test. The results showed no evidence of change in rainfall pattern. The mean seasonal rainfall was 631 mm with a standard deviation (SD) of 175 mm. December, January and February consistently remained the major rainfall months. The results depicted high inter-annual variability for both annual and seasonal rainfall totals, a high incidence of droughts ≥3 out of every 10 years and ≥1 wet year in 10 years. Using the planting criteria recommended in Zimbabwe, most of the plantings would occur from the third decade of November with the mode being the first decade of December. This predisposes the rainfall to high evaporation and runoff losses especially in December when the crop is still in its initial stage of growth. On average 5 to more than 20 days dry spells occupy 56% of the rainy season. Seasonal rainfall exhibited negative correlation ( P
  • Authors:
    • Pepo, P.
  • Source: Cereal Research Communications
  • Volume: 39
  • Issue: 1
  • Year: 2011
  • Summary: The interactions of ecological conditions, genotypes and agrotechnical elements determine the yield quantity, quality and stability in cereal (wheat, maize) production. The applied input-level can modify the adaptive capacity of crop models to ecological conditions. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in the long-term experiment on chernozem soil. Our scientific results proved that the high yields and good yield-stability were obtained in the input-intensive crop models, so these models had better adaptive capacity, high yield and resilience. Maize had lower ecological adaptive ability than winter wheat. The optimalization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha -1 in extensive and 8 and 10 t ha -1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha -1 and 10 and 15 t ha -1, respectively.
  • Authors:
    • Strickland, T. C.
    • Bosch, D. D.
    • Webster, T. M.
    • Truman, C. C.
    • Potter, T. L.
  • Source: Journal of Agricultural and Food Chemistry
  • Volume: 59
  • Issue: 14
  • Year: 2011
  • Summary: Intensive glyphosate use has contributed to the evolution and occurrence of glyphosate-resistant weeds that threaten production of many crops. Sustained use of this highly valued herbicide requires rotation and/or substitution of herbicides with different modes of action. Cotton growers have shown considerable interest in the protoporphyrinogen oxidase inhibitor, fomesafen. Following registration for cotton in 2008, use has increased rapidly. Environmental fate data in major use areas are needed to appropriately evaluate risks. Field-based rainfall simulation was used to evaluate fomesafen runoff potential with and without irrigation incorporation in a conventional tillage system (CT) and when conservation tillage (CsT) was practiced with and without cover crop residue rolling. Without irrigation incorporation, relatively high runoff, about 5% of applied, was measured from the CT system, indicating that this compound may present a runoff risk. Runoff was reduced by >50% when the herbicide was irrigation incorporated after application or when used with a CsT system. Data indicate that these practices should be implemented whenever possible to reduce fomesafen runoff risk. Results also raised concerns about leaching and potential groundwater contamination and crop injury due to rapid washoff from cover crop residues in CsT systems. Further work is needed to address these concerns.
  • Authors:
    • Nichols, R. L.
    • Kelton, J. A.
    • Culpepper, S. A.
    • Balkcom, K. S.
    • Price, A. J.
    • Schomberg, H.
  • Source: Journal of Soil and Water Conservation
  • Volume: 66
  • Issue: 4
  • Year: 2011
  • Summary: Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. When consistently practiced as a soil and crop management system, it greatly reduces soil erosion and is recognized for the potential to improve soil quality and water conservation and plant available water. Adoption of conservation tillage increased dramatically with the advent of transgenic, glyphosate-resistant crops that permitted in-season, over-the-top use of glyphosate (N-[phosphonomethyl] glycine), a broad-spectrum herbicide with very low mammalian toxicity and minimal potential for off-site movement in soil or water. Glyphosate-resistant crops are currently grown on approximately 70 million ha (173 million ac) worldwide. The United States has the most hectares (45 million ha [99 million ac]) of transgenic, glyphosate-resistant cultivars and the greatest number of hectares (46 million ha [114 million ac]) in conservation tillage. The practice of conservation tillage is now threatened by the emergence and rapid spread of glyphosate-resistant Palmer amaranth (Amaranthus palmeri [S.]Wats.), one of several amaranths commonly called pigweeds. First identified in Georgia, it now has been reported in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. Another closely related dioecious amaranth, or pigweed, common waterhemp (Amaranthus rudis Sauer), has also developed resistance to glyphosate in Illinois, Iowa, Minnesota, and. Missouri. Hundreds of thousands of conservation tillage hectares, some currently under USDA Natural Resources Conservation Service conservation program contracts, are at risk of being converted to higher-intensity tillage systems due to the inability to control these glyphosate-resistant Amaranthus species in conservation tillage systems using traditional technologies. The decline of conservation tillage is inevitable without the development and rapid adoption of integrated, effective weed control strategies. Traditional and alternative weed control strategies, such as the utilization of crop and herbicide rotation and integration of high residue cereal cover crops, are necessary in order to sustain conservation tillage practices.
  • Authors:
    • Kabenge, I.
    • Irmak, S.
    • Sharma, V.
    • Kilic, A.
  • Source: Transactions of the ASABE
  • Volume: 54
  • Issue: 3
  • Year: 2011
  • Summary: Understanding the relationship between the spatial distribution of precipitation and crop yields on large scales (i.e., county, state, regional) while accounting for the spatial non-stationarity can help managers to better evaluate the long-term trends in agricultural productivity to make better assessments in food security, policy decisions, resource assessments, land and water resources enhancement, and management decisions. A relatively new technique, geographically weighted regression (GWR), has the ability to account for spatial non-stationarity with space. While its application is growing in other scientific disciplines (i.e., social sciences), the application of this new technique in agricultural settings has not been practiced. The geographic information system (GIS), along with two different statistical techniques [GWR and conventional ordinary least square regression (OLS)], was utilized to analyze the relationships between various precipitation categories and irrigated and rainfed maize and soybean yields for all 93 counties in Nebraska from 1996 to 2008. Precipitation was spatially interpolated in ArcGIS using a spline interpolation technique with zonal statistics. Both measured and GWR- and OLS-predicted yields were correlated to spatially interpolated annual (January 1 to December 31), seasonal (May 1 to September 30), and monthly (May, June, July, August, and September) precipitation for each county. Statewide average annual precipitation in Nebraska from 1996 to 2008 was 564 mm, with a maximum of 762 mm and minimum of 300 mm. Mean precipitation decreased gradually from May to September during the growing season. County average yields followed the same temporal trends as precipitation. When the OLS regression model was used, there was a general trend of linear correlation between observed yield and long-term average mean annual total precipitation with a varying coefficient of determination (R 2). For rainfed crops, 67% of the variability in mean yield was explained by the mean annual precipitation. About 23% and 17% of the variability in mean yield was explained by mean annual precipitation for irrigated maize and soybean, respectively. However, the performance of the GWR technique in predicting the yields from spatially interpolated precipitation for irrigated and rainfed maize and soybean was significantly better than the performance of the OLS model. For both rainfed maize and soybean, 77% to 80% of the variation in yield was explained by the mean annual precipitation alone. For irrigated crops, 42% of the variation in the yield was explained by the mean annual precipitation. For rainfed crops, there was a strong correlation between seasonal precipitation and yield, with R 2 values of 0.73 and 0.76 for maize and soybean, respectively. The mean annual total precipitation was a better predictor of rainfed maize yield than rainfed soybean yield. On a statewide average, July precipitation as a predictor had the greatest correlation with yields of both maize and soybean. June, July, and August precipitation had greater impact on maize yield than on soybean under rainfed conditions due to more sensitivity of maize to water stress than soybean. For irrigated yields, July precipitation had more impact on soybean yield than on maize. The performance of the GWR technique was superior to the OLS model in analyzing the relationship between yield and precipitation. The superiority of the GWR technique to OLS is mainly due to its ability to account for the impact of spatial non-stationarity on the precipitation vs. yield relationships.