- Authors:
- Salokhe, V. M.
- Taewichit, C.
- Soni, P.
- Source: Agricultural Systems
- Volume: 116
- Year: 2013
- Summary: Farm mechanization has been progressively increasing in Thailand for the past decades. Consumption and abuse of energy intensive inputs, machinery and agro-chemicals is increasingly propagated into agricultural production systems. Effects of energy intensive input utilization and farm technologies are directly associated especially with farm economic and atmospheric issues. This warrants the need of energy input-output analyses coupled with its environmental dimension. This paper presents the energy input-output analyses of different agricultural activities and fresh pond-culture (polyculture), for which data were collected from 46 rainfed integrated agricultural production systems (IAPSs) of 281 farm plots surveyed. Total energy consumption including non-renewable energy input (NREI), direct and indirect energy input, and system efficiency are calculated and compared for different crops. Resource-wise energy input utilization and energy consumed by farm operations are also discussed for different crops. Further, this study simultaneously relates energy consumption in agricultural production systems associated with their corresponding greenhouse gases (GHGs) emission - presented in terms of total carbon dioxide equivalent (CO(2)e). Results reveal noticeable variations in energy consumption and CO(2)e emissions from various agricultural production activities. The study reveals that the maximum energy consumer is cassava (32.4 GJ ha(-1)). Major energy input consumption for all productions are indicated by fossil fuel (diesel oil) as fresh pond-culture depended on fish feed. Transplanted rice provides the highest CO(2)e emission (1112 kg CO(2)e ha(-1)) among crops, in which more than 50% is contributed by methane (CH4).
- Authors:
- Paustian, K.
- Ngugi, M. K.
- Suddick, E. C.
- Six, J.
- Source: California Agriculture
- Volume: 67
- Issue: 3
- Year: 2013
- Summary: California growers could reap financial benefits from the low-carbon economy and cap-and-trade system envisioned by the state's AB 32 law, which seeks to lower greenhouse gas emissions statewide. Growers could gain carbon credits by reducing greenhouse gas emissions and sequestering carbon through reduced tillage and increased biomass residue incorporation. First, however, baseline stocks of soil carbon need to be assessed for various cropping systems and management practices. We designed and set up a pilot soil carbon and land-use monitoring network at several perennial cropping systems in Northern California. We compared soil carbon content in two vineyards and two orchards (walnut and almond), looking at conventional and conservation management practices, as well as in native grassland and oak woodland. We then calculated baseline estimates of the total carbon in almond, wine grape and walnut acreages statewide. The organic walnut orchard had the highest total soil carbon, and no-till vineyards had 27% more carbon in the surface soil than tilled vineyards. We estimated wine grape vineyards are storing significantly more soil carbon per acre than almond and walnut orchards. The data can be used to provide accurate information about soil carbon stocks in perennial cropping systems for a future carbon trading system.
- Authors:
- Aronsson, A. K. S.
- Svanes, E.
- Source: The International Journal of Life Cycle Assessment
- Volume: 18
- Issue: 8
- Year: 2013
- Summary: Bananas are one of the highest selling fruits worldwide, and for several countries, bananas are an important export commodity. However, very little is known about banana's contribution to global warming. The aims of this work were to study the greenhouse gas emissions of bananas from cradle to retail and cradle to grave and to assess the potential of reducing greenhouse gas (GHG) emissions along the value chain. Carbon footprint methodology based on ISO-DIS 14067 was used to assess GHG emissions from 1 kg of bananas produced at two plantations in Costa Rica including transport by cargo ship to Norway. Several methodological issues are not clearly addressed in ISO 14067 or the LCA standards 14040 and ISO 14044 underpinning 14067. Examples are allocation, allocation in recycling, representativity and system borders. Methodological choices in this study have been made based on other standards, such as the GHG Protocol Products Standard. The results indicate that bananas had a carbon footprint (CF) on the same level as other tropical fruits and that the contribution from the primary production stage was low. However, the methodology used in this study and the other comparative studies was not necessarily identical; hence, no definitive conclusions can be drawn. Overseas transport and primary production were the main contributors to the total GHG emissions. Including the consumer stage resulted in a 34 % rise in CF, mainly due to high wastage. The main potential reductions of GHG emissions were identified at the primary production, within the overseas transport stage and at the consumer. The carbon footprint of bananas from cradle to retail was 1.37 kg CO2 per kilogram banana. GHG emissions from transport and primary production could be significantly reduced, which could theoretically give a reduction of as much as 44 % of the total cradle-to-retail CF. The methodology was important for the end result. The choice of system boundaries gives very different results depending on which life cycle stages and which unit processes are included. Allocation issues were also important, both in recycling and in other processes such as transport and storage. The main uncertainties of the CF result are connected to N2O emissions from agriculture, methane emissions from landfills, use of secondary data and variability in the primary production data. Thus, there is a need for an internationally agreed calculation method for bananas and other food products if CFs are to be used for comparative purposes.
- Authors:
- Kitano, M.
- Yasunaga, E.
- Setoyama, S.
- Araki, T.
- Tamanoi, A.
- Matsubara, K.
- Ohara, M.
- Yano, T.
- Source: Environmental Control in Biology
- Volume: 51
- Issue: 1
- Year: 2013
- Summary: Light condition is a fundamental environmental factor for high-quality plant production. In this paper, we discuss how light condition affects fruit development in the long and short term, and attempt to clarify management methods for active fruit development under conditions of low solar radiation, by using quantitative research on fruit water and carbon balance during greenhouse cultivation of Satsuma mandarin (Citrus unshiu Marc.). A significant decrease in yield due to shading was not detected, but we confirmed that shading treatment affected the dry weights of source-sink units, fruit volume, increase in volume of the fruits, and fruit quality parameters, such as sugar accumulation, acid content, and rind color. Qualitatively, the carbon balance of Satsuma mandarin fruit is comparable to that of tomato fruit or rice panicle, but quantitatively, the carbon balance of Satsuma mandarin fruit may differ, as shown by low sink relative growth rate. In addition, fruit growth parameters such as translocation rate for a fruit and fruit relative growth rate showed significant positive correlations with dark respiration, despite the shading treatment. The fruit carbon demand may be simply described by fruit dark respiration as the sum of new photosynthetic carbon and stored carbon translocation for a fruit.
- Authors:
- Moriondo,M.
- Jones,G. V.
- Bois,B.
- Dibari,C.
- Ferrise,R.
- Trombi,G.
- Bindi,M.
- Source: Climatic Change
- Volume: 119
- Issue: 3-4
- Year: 2013
- Summary: This research simulates the impact of climate change on the distribution of the most important European wine regions using a comprehensive suite of spatially informative layers, including bioclimatic indices and water deficit, as predictor variables. More specifically, a machine learning approach (Random Forest, RF) was first calibrated for the present period and applied to future climate conditions as simulated by HadCM3 General Circulation Model (GCM) to predict the possible spatial expansion and/or shift in potential grapevine cultivated area in 2020 and 2050 under A2 and B2 SRES scenarios. Projected changes in climate depicted by the GCM and SRES scenarios results in a progressive warming in all bioclimatic indices as well as increasing water deficit over the European domain, altering the climatic profile of each of the grapevine cultivated areas. The two main responses to these warmer and drier conditions are 1) progressive shifts of existing grapevine cultivated area to the north-northwest of their original ranges, and 2) expansion or contraction of the wine regions due to changes in within region suitability for grapevine cultivation. Wine regions with climatic conditions from the Mediterranean basin today (e.g., the Languedoc, Provence, Ctes Rhne M,ridionales, etc.) were shown to potentially shift the most over time. Overall the results show the potential for a dramatic change in the landscape for winegrape production in Europe due to changes in climate.
- Authors:
- Paoletti, M. G.
- Marini, L.
- Nascimbene, J.
- Source: Environmental Management
- Volume: 49
- Issue: 5
- Year: 2012
- Summary: The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.
- Authors:
- Source: Plant Disease
- Volume: 96
- Issue: 3
- Year: 2012
- Summary: Multiple applications of fungicides are used to manage anthracnose caused by Colletotrichum orbiculare and gummy stem blight caused by Didymella bryoniae, the two most common and destructive diseases on watermelon ( Citrullus lanatus) in the mid-Atlantic region of the United States. To develop a sustainable, nonchemical management option, a split-plot experiment was conducted over 3 years to evaluate the effects of a no-till hairy vetch ( Vicia villosa) cover crop on disease severity, plant growth, and fruit yield compared with two conventional bedding systems and fungicide application. The main plots were bedding strategies consisting of bare ground, polyethylene covering, or a hairy vetch cover crop that was planted in the fall, killed the following spring, and left on the soil surface as an organic mulch. The subplots were a nonfungicide control or a weekly application of a standard fungicide program. Hairy vetch mulch provided greater than a 65% reduction in the area under the disease progress curves of anthracnose and gummy stem blight and greater than an 88% decrease in diseased fruit compared with bare ground or polyethylene mulch. The reductions were comparable with those achieved by fungicide applications. Watermelon vine lengths in plots with hairy vetch were similar to or greater than those in plots with polyethylene or bare ground that were treated with fungicides. Marketable fruit in plots with hairy vetch was higher compared with bare ground in 2 of 3 years and was similar to that in plots treated with fungicides in all 3 years. Addition of fungicide application to hairy vetch treatment further reduced anthracnose in 1 year and gummy stem blight in 2 years but did not significantly increase fruit yield in all 3 years. This is the first demonstration that a no-till hairy vetch production system can reduce anthracnose and gummy stem blight on watermelon and that the production system has the potential to mitigate damage caused by these diseases.
- Authors:
- Pannacci, E.
- Onofri, A.
- Graziani, F.
- Tei, F.
- Guiducci, M.
- Source: European Journal of Agronomy
- Volume: 39
- Year: 2012
- Summary: Long-term effects of organic (ORG) and conventional low-input (CONV) farming systems on size and composition of weed seedbank were assessed in 2007 in central Italy, in an on-farm experiment set up in 1996. In this experiment, six rotations (R1-R6) were considered, basically consisting on the same crop sequence with different starting points, i.e. (1) legume crop (soybean/field bean/common pea), (2) vegetable crop (pepper/melon), (3) winter cereal (soft/durum wheat), (4) summer cereal (maize) (5) industrial vegetable (processing tomato), (6) winter cereal (soft/durum wheat). All rotations were established both in ORG and in CONV, in strict adherence to EU regulations (ORG: EU reg. 2092/91; CONV: EU reg. 2078/92). Intercrops with green manuring purposes were included in ORG, while weed control was performed mechanically in ORG and chemically/mechanically in CONV. Weed seedbank was determined on 10 soil samples (0-0.30 m depth) in each plot and seeds were directly extracted, identified and counted. In all rotations, the adoption of ORG resulted in a significant increase in weed seedbank density, particularly in the case of summer weed species ( Portulaca oleracea L., Amaranthus retroflexus L. and Chenopodium album L.), which are more competitive and difficult to control in summer crops under organic farming systems in the Mediterranean climates. Small differences between ORG and CONV were found in terms of number of weed species (23 in ORG and 20 in CONV, on average), but the index of diversity in CONV was on average higher than in ORG. Furthermore, the most dominant weeds in CONV represented a lower percentage of total seedbank (40%, 23% and 5%, respectively, for P. oleracea, A. retroflexus and C. album in CONV and 56%, 32% and 4% for the same three weeds in ORG). These results confirm that the wider availability of effective weed control methods in integrated low-input farming systems (CONV) is helpful to maintain a low seedbank size, with a lower dominance structure. However, the adoption of ORG systems based on long rotation cycles, very competitive crops and accurate weed control, especially at the beginning of the ORG management, may be sustainable in the long run, in terms of potential weed infestation levels.
- Authors:
- Ruberto, G.
- Renda, A.
- Strano, T.
- Bosco, S.
- Tusa, N.
- Abbate, L.
- Source: Food Research International
- Volume: 48
- Issue: 1
- Year: 2012
- Summary: Three new somatic hybrids, namely an allotetraploid hybrid and two cybrids (2n and 4n), have been obtained by protoplast fusion of 'Valencia' sweet orange ( Citrus sinensis L. Osbeck) + 'Femminello' lemon ( C. limon L. Burm.). The chemical composition of the essential oils of the hybrids and their parents has been studied by gas chromatography (GC) combined with a flame ionisation detector (FID) and a mass spectrometry (MS). In all, 87 components were fully characterised and grouped in four classes (monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpenes, and others) for an easier comparison of all oils. A statistical treatment by linear discriminant analysis of the compositional data from GC analyses was also carried out. The allotetraploid hybrid and both cybrids show an intermediate essential oil profile with respect to those of both parents. The contribution of 'Femminello' lemon parent is in all cases predominant in the production of the volatile profiles of the new hybrids; however, different behaviour in the peel essential accumulation between the allotetrapolid hybrid and the two cybrids is observed.
- Authors:
- Kizilay, H.
- Akcaoz, H.
- Akdemir, S.
- Source: Journal of Food Agriculture & Environment
- Volume: 10
- Issue: 2 part 2
- Year: 2012
- Summary: This research examines the energy use patterns and energy input-output analysis of apple production in the Antalya province, which is an important agricultural center in Turkey. Data for the apple production were collected from 90 apple farms by using a face-to-face survey method. The energy input of chemical fertilizer (41.03%), mainly nitrogen, has the biggest share in the total energy inputs followed by electricity (29.21%). The apple production consumed a total of 43,404.31 MJ ha -1. The energy ratio for apple was estimated to be 1.51. The specific energy, energy productivity, energy intensiveness and net energy yield were 1.59 MJ kg -1, 0.63 kg MJ -1, 3.31 MJ TL -1, and 22,103.83 MJ ha -1, respectively. The non-renewable form of energy input was 95.76% of the total energy input used in apple production compared to only 4.01% for the renewable form. The benefit-cost ratio of the cotton production was 1.48.