• Authors:
    • Ganesh-Kumar, A.
    • Pullabhotla, H.
    • Gupta, N.
    • Shreedhar, G.
    • Gulati, A.
  • Issue: 1159
  • Year: 2012
  • Summary: This paper reviews the key policies with regard to agriculture inputs such as seed, fertilizer, water, agricultural equipment, research, extension, and agricultural credit. It also provides an overview of the policies and programs related to agricultural output markets that are crucial for improving cereal production in the country. A review of the past performance and policies of India's foodgrain sector reveals that the main drivers of growth have been modern inputs and technology, institutions, and markets with the changing role of the public and private sectors. The present challenge facing Indian policymakers is to efficiently balance food security concerns and higher growth objectives. This will require not only pushing the production frontier to sustainably augment supply, but also ensuring strategic management of foodgrains including procurement and distribution. The review of input policies highlights the pressure placed on foodgrain systems, in a business-as-usual scenario that extensively subsidizes input and promotes their intensive usage. Fallouts such as excessive groundwater withdrawals and distorted application of nitrogenous fertilizers have implications on the environmental sustainability of natural resources apart from being a considerable fiscal burden. The current policy of subsidizing agricultural power, irrigation, and fertilizers has outlived its relevance and is actually constraining agricultural investments in areas where the returns are higher. Although it is difficult to completely remove these subsidies, they still need to be gradually phased out and converted into investments in rural infrastructure (especially roads) and research and extension systems, which desperately need to be (re)vitalized. It is time the government started to actively partner with the private sector (in infrastructure creation and research) and civil society organizations (in extension), as they have played an increasingly important role in recent years. The review of the output management policies show that the current policy paradigm consisting of public procurement of grains at a preannounced minimum support price, public storage, and public distribution has resulted in distortions across crops, especially rice and wheat, as well periodic buildup of large stockpiles and stock rundown of these grains at a high cost to the government. Moreover, public procurement and stocking, coupled with interventionist international trade policies, is often at variance with the trends in international markets, resulting in lost opportunities for Indian exporters of rice and wheat. The regional concentration of the system of public procurement in the northern states, aided by intra-country trade and movement restrictions, has also resulted in large spatial disparity in agricultural productivity and farm income as well as uneven development of output markets across states. As a result, producer and consumer welfare is often compromised, even though the government's objective is to maintain a balance between them. Major reforms on the output side would include linking of MSPs with market prices, allowing futures markets in cereals, liberalizing international trade and bring forth greater competition in domestic trade to ensure output markets are more uniformly developed across states and that the country has a truly integrated market for foodgrains.
  • Authors:
    • Kutu, F. R.
  • Source: African Journal of Agricultural Research
  • Volume: 7
  • Issue: 26
  • Year: 2012
  • Summary: Conservation agriculture experiment was conducted under irrigated and dryland conditions during 2007/2008-summer cropping season to determine a suitable soil-crop management practice for increase maize yield. The study consisted of tillage practices (conventional, minimum and zero), cropping systems (sole and intercrop plots) and fertilizer regimes (unfertilized control, low, adjusted low and optimum) as treatments. Minimum and zero tillage practices constituted the conservation agriculture tillage practices while supplementation of low fertilizer rate with seed inoculation using growth enhancing microbial inoculant constituted the adjusted low fertilizer rate. Fertilizer application gave a significant (P
  • Authors:
    • Connell, T.
    • Knuteson, D. L.
    • MacGuidwin, A. E.
    • Bland, W. L.
    • Bartelt, K. D.
  • Source: Phytopathology
  • Volume: 102
  • Issue: 5
  • Year: 2012
  • Summary: We used cover crops with demonstrated efficacy against Verticillium dahliae and Pratylenchus penetrans in combination with the biocidal practice of solarization to determine the importance of targeting both organisms for managing potato early dying, an issue relevant to the search for alternatives to soil fumigation. Two experiments were conducted in commercial fields using a split-plot design with cover crop treatments of rapeseed, marigold, forage pearl millet, sorghum-sudangrass, and corn as the main plot factor and solarization as the subplot factor. Cover crops were grown and solarization applied in year one, followed by potato in year two. The main effect of solarization was significant for reduced inoculum levels of both organisms in year two and increased tuber yields. The main effect of cover crop was also significant with lower population densities of P. penetrans following the marigold and millet treatments and of V. dahliae following rape and sorghum-sudangrass. The cover crop treatments influenced yield in only one of the experiments in the absence of solarization. The combinatorial effect of cover crops and solarization resulted in a wide range of pathogen population densities. Mean soil inoculum levels were negatively related to yield for V. dahliae in experiment 1, and for P. penetrans and the P. penetrans x V. dahliae interaction in both experiments.
  • Authors:
    • Van Remortel, R.
    • Smith, E.
    • Mehaffey, M.
  • Source: Ecological Applications
  • Volume: 22
  • Issue: 1
  • Year: 2012
  • Summary: Meeting future biofuel targets set by the 2007 Energy Independence and Security Act (EISA) will require a substantial increase in production of corn. The Midwest, which has the highest overall crop production capacity, is likely to bear the brunt of the biofuel-driven changes. In this paper, we set forth a method for developing a possible future landscape and evaluate changes in practices and production between base year (BY) 2001 and biofuel target (BT) 2020. In our BT 2020 Midwest landscape, a total of 25 million acres (1 acre = 0.40 ha) of farmland was converted from rotational cropping to continuous corn. Several states across the Midwest had watersheds where continuous corn planting increased by more than 50%. The output from the Center for Agriculture and Rural Development (CARD) econometric model predicted that corn grain production would double. In our study we were able to get within 2% of this expected corn production. The greatest increases in corn production were in the Corn Belt as a result of conversion to continuous corn planting. In addition to changes to cropping practices as a result of biofuel initiatives we also found that urban growth would result in a loss of over 7 million acres of productive farmland by 2020. We demonstrate a method which successfully combines economic model output with gridded land cover data to create a spatially explicit detailed classification of the landscape across the Midwest. Understanding where changes are likely to take place on the landscape will enable the evaluation of trade-offs between economic benefits and ecosystem services allowing proactive conservation and sustainable production for human well-being into the future.
  • Authors:
    • Mariga, I. K.
    • Molatudi, R. L.
  • Source: African Journal of Agricultural Research
  • Volume: 7
  • Issue: 20
  • Year: 2012
  • Summary: An experiment was conducted under dryland conditions at the University of Limpopo experimental farm at Syferkuil in Capricorn district in 2007/2008 and 2008/2009 growing seasons to determine the effect of maize density and dry bean variety on maize/bean intercrop performance. The trial was at 2*2*2 factorial consisting of eight treatments: two maize densities (24 700 and 37 000 plants/ha), two dry bean varieties (small white haricot and red speckled sugar bean) and two cropping systems (sole cropping and intercropping). Open pollinated maize variety ZM 523 (ex CIMMYT) was used in the trial. The results showed that maize density of 24 700 plants/ha yielded lower maize grain than the recommended 37 000 plants/ha and maize grain yields in sole cropping were significantly higher than in intercropping in both growing seasons. Intercropping of maize with red speckled sugar bean resulted in lower grain yield than intercropping of maize with small white haricot in both seasons. Increasing maize density to 37 000 plants/ha reduced number of branches per plant and grain yield of dry bean in both seasons. Sole cropping produced the highest dry bean grain yield component values. Intercropping maize and beans was advantageous at the different bean variety x maize density combinations with all, except one, achieving Land equivalent ratio (LER) values greater than 1. Intercropping of maize plant density of 37 000 plants/ha with red speckled sugar bean gave the highest total LER value in 2007/8 season but less than 1 in 2008/9 season. Intercropping was more advantageous than sole cropping in this study. The highest monetary values were achieved by the bean sole crops and their intercrops with 24 700 plants/ha maize. In this study maize densities of 37 000 plants/ha and 24 700 plants/ha were found to be suitable for sole maize and maize/bean intercropping, respectively.
  • Authors:
    • Twomlow, S.
    • Mupangwa, W.
    • Walker, S.
  • Source: Field Crops Research
  • Volume: 132
  • Year: 2012
  • Summary: Proponents of conservation agriculture (CA) argue that the CA approach offers the greatest opportunity to increase the productivity in smallholder agro-ecosystems. This study was designed to assess (1) first year maize, cowpea and sorghum yield responses to a combination of reduced tillage and mulching and (2) maize yield responses to rotation with cowpea and sorghum in reduced tillage systems. Two conservation tillage methods (ripping and planting basins) combined factorially with seven mulch levels (0, 0.5, 1, 2, 4, 8 and 10 t ha -1) were compared with conventional mouldboard ploughing. The experiment was run for four consecutive growing seasons allowing for a rotation of maize, cowpea, sorghum and maize in some fields used in the study. Crop yields were determined across all tillage and mulch combinations in each year. Tillage system had no significant effect on maize yield while maize grain yield increased with increase in mulch cover in seasons that had below average rainfall. Mulching at 2-4 t ha -1 gave optimum yields in seasons with below average rainfall. Tillage system and mulching had no significant effect on cowpea yield when soil moisture was not limiting. However, the ripper and basin systems had 142 and 102% more cowpea grain than the conventional system in 2006/2007 because of differences in planting dates used in three systems and poor rainfall distribution. The conventional and ripper systems gave 26 and 38% more sorghum grain than the basin system. Rotating maize with cowpea and sorghum resulted in 114, 123 and 9% more grain than first year maize, maize-maize monocrop and maize-cowpea-maize in the conventional system. In the ripper system, maize-cowpea-sorghum-maize rotation gave 98, 153 and 39% more grain than first year maize, maize-maize monocrop and maize-cowpea-maize rotation. In the basin system, maize-cowpea-sorghum-maize rotation gave 274, 240 and 43% more grain than first year maize, maize-maize monocrop and maize-cowpea-maize rotation. However, long term studies under different soil, climatic and socio-economic conditions still need to be conducted to substantiate the observations made in the reported study.
  • Authors:
    • Rodrigues, J. G. L.
    • Fernandes, D. M.
    • Bicudo, S. J.
    • Nascimento, F. M.
    • Fernandes, J. C.
    • Furtado, M. B.
  • Source: Científica (Jaboticabal)
  • Volume: 40
  • Issue: 1
  • Year: 2012
  • Summary: The objective of this research work was to evaluate the effects of doses and time of application of N on the C/N ratio of the straw cover and on the growth and productivity of maize plants growing in a no tillage system. The experiment was carried out at the Experimental Farm of the College of Agriculture of the Sao Paulo State University (UNESP) on its campus of Botucatu, state of Sao Paulo, Brazil. The treatments were distributed in the field according to a randomized complete block design in a split plot arrangement. The treatments consisted of four doses of N (0, 20, 40, and 60 kg ha -1) applied to oat crop and N doses (60, 80, 100, and 120 kg ha -1) sidedressed to corn. The development and productivity of the maize crop in a no-tillage system were found to be dependent of the C/N ratio and the straw cover. The response of the maize plants to the early application of N is dependent on doses and time of application.
  • Authors:
    • Mkwinda, S.
    • Aune,J. B.
    • Ngwira, A. R.
  • Source: Field Crops Research
  • Volume: 132
  • Year: 2012
  • Summary: Low crop yields due to continuous monocropping and deteriorating soil health in smallholder farmers' fields of sub-Saharan Africa have led to a quest for sustainable production practices with greater resource use efficiency. The aim of the study was to elucidate the short term effects of conservation agriculture (CA) systems on soil quality, crop productivity and profitability. In Balaka market and Ntonda sections of Manjawira Extension Planning Area (EPA), in Ntcheu district, central Malawi, we compared continuous monocropped maize (Zea mays) under conventional tillage practice (CP) with different CA systems in continuous monocropped maize (CAM) and intercropping with pigeonpea (Cajanus cajan) (CAMP), Mucuna pruriens (CAMM), and Lablab purpureus (L) (Sweet) (CAML). The study was conducted from 2008 to 2011 in 72 plots in 24 farmers' fields. In Balaka market section CA plots with maize + legumes produced up to 4.3 Mg ha(-1) of vegetative biomass against 3.5 Mg ha for maize alone in CP. In Ntonda section CA plots with maize + legumes produced up to 4.6 Mg ha(-1) of vegetative biomass against 2.4 Mg ha(-1) for maize alone in CP. In both sections, during the entire study period. CA did not have a negative effect on crop yields. During the drier seasons of 2009110 and 2010/11, CA had a positive effect on maize grain yield at both sites (average yield of 4.4 and 3.3 Mg ha(-1) in CA and CP respectively). However, associating maize with legumes reduced maize yields compared to CAM particularly in drier years of 2009-10 and 2010-11. Farmers spent at most 47 days ha(-1) producing maize under CA systems compared to 65 days ha(-1) spent under conventional tillage practices. However, total variable costs were higher in CA systems compared to conventional practice (at most US$416 versus US$344 ha(-1)). CAMP resulted in more than double gross margin compared to CPM (US$705 versus uS$344 hat). Infiltration estimated as time to pond was highest in CA maize legume intercrops (8.1 s) than CP (6.8 s). Although it was not feasible to directly estimate effects on water balances of these farmer-managed experiments, it can be assumed that the yield differences between CA and CP could be attributed to tillage and crop residue cover since other farm operations were generally the same. Intercropping maize and pigeonpea under CA presents a win-win scenario due to crop yield improvement and attractive economic returns provided future prices of maize and pigeonpea grain remain favourable. (C) 2011 Elsevier B.V. All rights reserved.
  • Authors:
    • De Neve, S.
    • Sleutel, S.
    • Ngwira, A.
  • Source: Nutrient Cycling in Agroecosystems
  • Volume: 92
  • Issue: 3
  • Year: 2012
  • Summary: Conservation agriculture (CA) characterised by minimal soil disturbance, permanent soil surface cover by dead or living plants and crop rotations is one way of achieving higher soil organic carbon (C) in agricultural fields. Sandy loam and loamy soil samples from zero tillage (ZT) and conventional tillage (CT) plots were taken from farmers' fields during the dry season in August 2006. Soil organic carbon (SOC) and soil organic nitrogen (SON), microbial biomass carbon (MB-C) and microbial biomass nitrogen (MB-N), C mineralization and SOC distribution in particle size fractions in 0-20 cm layer were evaluated. Forty eight farmers' fields were randomly sampled at four different locations in Central and Northern Malawi, representing ZT plots maintained for a different number of years, and ten fields under CT with similar soil type and crop grown were selected. SOC and SON in ZT fields were 44 and 41 % (4 years ZT) and 75 and 77 % (5 years ZT) higher, respectively, than CT plots. MB-C and MB-N in ZT fields were 16 and 44 % (4 years ZT) and 20 and 38 % (5 years ZT) higher, respectively, than CT plots. However, MB-C and MB-N in ZT fields were 27 and 25 % (2 years ZT) and 17 and 9 % (3 years ZT) lower than in CT plots. The proportion of the total organic C as microbial biomass C was relatively higher under CT than ZT treatments. The higher SOC and MB-C content in the ZT fields resulted in 10, 62, 57 % higher C mineralization rate in ZT plots of 3, 4 and 5 years of loamy sand soils and 35 % higher C mineralization rate in ZT plot of 2 years than CT of sandy loam soils in undisturbed soils in the laboratory. Simulating plough from the undisturbed soils that were used for C mineralization experiment resulted in linear curves indicating that all organic C was already depleted during the first incubation period. The relative distribution of soil organic matter (SOM) in silt and clay size fractions was strongly correlated (r = 0.907 and P a parts per thousand currency sign 0.01) with silt percentages. Easily degradable carbon pool (C-A,C-f) was correlated (r = 0.867 and P a parts per thousand currency sign 0.05) with organic carbon in sand size fraction. In developing viable conservation agriculture practices to optimize SOC content and long-term sustainability of maize production systems, priority should be given to the maintenance of C inputs, crop rotations and associations and also to reduced soil disturbance by tillage.
  • Authors:
    • Van Eerd, L. L.
    • Vyn, R. J.
    • Lauzon, J. D.
    • O'Reilly, K. A.
  • Source: Canadian Journal of Soil Science
  • Volume: 92
  • Issue: 2
  • Year: 2012
  • Summary: In order to improve N best management practices in southwestern Ontario vegetable farming, the effect of cover crops on N dynamics in the fall and spring prior to sweet corn planting and during sweet corn season was assessed. The experiment was a split plot design in a fresh green pea - cover crop - sweet corn rotation that took place over 2 site-years at Bothwell and Ridgetown in 2006-2007 and 2007-2008, respectively. The main plot factor was fall cover crop type with five treatments including oat (Avena saliva L.), cereal rye (Secale cereal L.), oilseed radish (OSR; Raphanus sativus L. var. oleoferus Metzg Stokes), mixture OSR plus cereal rye (OSR&rye) and a no cover crop control. Compared with no cover crop, sweet corn profit margins were higher by $450 ha(-1) for oat at Bothwell and $1300 and $760 ha(-1) for OSR and OSR&rye, respectively, at Ridgetown. By comparing plant available N over the cover crop season, the cover crops tested were more effective at preventing N loss at Bothwell than at Ridgetown likely due to higher precipitation and sandier soil at Bothwell. Despite differences in site characteristics, cover crops did not result in increased plant available N compared with no-cover during the sweet corn season at either site, indicating that these cover crops will not provide an N credit to the following crop and growers should not modify N fertilizer applications based on cover crops.