• Authors:
    • Beegle, D. B.
    • Dellinger, A. E.
    • Schmidt, J. P.
  • Source: Agronomy Journal
  • Volume: 101
  • Issue: 4
  • Year: 2009
  • Summary: Precision agriculture technologies provide the capability to spatially vary N fertilizer applied to corn (Zea mays L.), potentially improving N use efficiency. The focus of this study was to evaluate the potential of improving N recommendations based on crop canopy reflectance. Corn was grown at four field sites in each of 2 yr in Centre County, Pennsylvania. Preplant treatments included: zero fertilizer, 56 kg N ha(-1), and manure. Split-plot treatments included the following N sidedress rates as NH4NO3: 0, 22, 45, 90, 135, 180, and 280 kg N ha(-1), and one at-planting N rate of 280 kg N ha(-1). Light energy reflectance (590 and 880 nm), chlorophyll meter (SPAD) measurements, and the presidedress NO3 test (PSNT) results were obtained at sidedress. The late-season stalk NO3 (LSSN) test was determined. The economic optimum nitrogen rate (EONR) was determined based on grain yield response to sidedress N rates. Relative green normalized difference vegetation index (GNDVI) and relative SPAD were based on relative measurements from the zero sidedress treatment to the 280 kg N ha(-1) at-planting treatment. The EONR from 24 preplant treatment-site combinations was related to relative GNDV1 (R-2 = 0.76), the PSNT (R-2 = 0.78), relative SPAD (R-2 = 0.72), and the LSSN test (R-2 = 0.64), suggesting that relative GNDVI was as good an indicator of EONR as these other, more conventional tests. Because relative GNDVI can be obtained simultaneously with a sidedress N fertilizer application, the potential to accommodate within-field spatial and season-to-season temporal variability in N availability should improve N management decisions for corn production.
  • Authors:
    • Robertson, G. P.
    • Kravchenko, A. N.
    • Basso, B.
    • Senthilkumar, S.
  • Source: Soil Science Society of America Journal
  • Volume: 73
  • Issue: 6
  • Year: 2009
  • Summary: Temporal changes in soil C content vary as a result of complex interactions among different factors including climate, baseline soil C levels, soil texture, and agricultural management practices. The study objectives were: to estimate the changes in soil total C contents that occurred in the past 18 to 21 yr in soils under agricultural management and in never-tilled grassland in southwest Michigan; to explore the relationships between these changes and soil properties, such as baseline C levels and soil texture; and to simulate C changes using a system approach model (SALUS). The data were collected from two long-term experiments established in 1986 and 1988. Georeferenced samples were collected from both experiments before establishment and then were resampled in 2006 and 2007. The studied agricultural treatments included the conventional chisel-plow and no-till management systems with and without N fertilization and the organic chisel-plow management with cover crops. Total C was either lost in the conventional chisel-plowed systems or was only maintained at the 1980s levels by the conservation management systems. The largest loss in the agricultural treatments was 4.5 Mg ha(-1) total C observed in the chisel-plow system without N fertilization. A loss of 17.3 Mg ha(-1) occurred in the virgin grassland sod. Changes in C content tended to be negatively related to baseline C levels. Under no-till, changes in C were positively related to silt + clay contents. The SALUS predictions of soil C changes were in excellent agreement with the observed data for most of the agricultural treatments and for the virgin soil.
  • Authors:
    • Service, R. F.
  • Source: Science
  • Volume: 326
  • Issue: 5952
  • Year: 2009
  • Summary: At first blush, it's easy to make the case for biofuels. By converting crops into ethanol or biodiesel, farmers can reduce demand for imported oil, lower national dependence on authoritarian governments in the Middle East, and potentially cut greenhouse gas emissions. But dig a little deeper, and the story gets more complicated. Biofuels promise energy and climate gains, but in some cases, those improvements wouldn't be dramatic. And they come with some significant downsides, such as the potential for increasing the price of corn and other food staples. Now, a series of recent studies is underscoring another risk: A widespread shift toward biofuels could pinch water supplies and worsen water pollution. In short, an increased reliance on biofuel trades an oil problem for a water problem.
  • Authors:
    • Reicosky, D. C.
    • Spokas, K. A.
  • Source: Annals of Environmental Science
  • Volume: 3
  • Year: 2009
  • Summary: One potential abatement strategy to increasing atmospheric levels of carbon dioxide (CO2) is to sequester atmospheric CO2 captured through photosynthesis in biomass and pyrolysed into a more stable form of carbon called biochar. We evaluated the impacts of 16 different biochars from different pyrolysis/gasification processes and feed stock materials (corn stover, peanut hulls, macadamia nut shells, wood chips, and turkey manure plus wood chips) as well as a steam activated coconut shell charcoal on net CO2, methane (CH4) and nitrous oxide (N2O) production/consumption potentials through a 100 day laboratory incubation with a Minnesota agricultural soil (Waukegan silt loam, total organic carbon = 2.6%); Wisconsin forest nursery soil (Vilas loamy sand, total organic carbon = 1.1%); and a California landfill cover soil (Marina loamy sand plus green waste-sewage sludge, total organic carbon = 3.9%) at field capacity (soil moisture potential = -33 kPa). After correcting for the CO2, CH4 and N2O production of the char alone, the addition of biochars (10% w/w) resulted in different responses among the soils. For the agricultural soil, five chars increased, three chars reduced and eight had no significant impact on the observed CO2 respiration. In the forest nursery soil, three chars stimulated CO2 respiration, while the remainder of the chars suppressed CO2 respiration. In the landfill cover soil, only two chars increased observed CO2 respiration, with the remainder exhibiting lower CO2 respiration rates. All chars and soil combinations resulted in decreased or unaltered rates of CH4 oxidation, with no increases observed in CH4 oxidation or production activity. Biochar additions generally suppressed observed N2O production, with the exception being high nitrogen compost-amended biochar, which increased N2O production. The general conclusions are: (1) the impact on trace gas production is both dependent on the biochar and soil properties and (2) biochar amendments initially reduce microbial activity in laboratory incubations. These preliminary results show a wide diversity in biochar properties that point to the need for more research.
  • Authors:
    • Institute for the Study of Earth, Oceans and Space
  • Year: 2009
  • Summary: The DNDC model is a process-base model of carbon (C) and nitrogen (N) biogeochemistry in agricultural ecosystems. This document describes how to use the PC Windows versions of the DNDC model for predicting crop yield, C sequestration, nitrate leaching loss, and emissions of C and N gases in agroecosystems. Part I provides a brief description of the model structure with relevant scientific basis. Part II describes how to install the model. Part III and IV demonstrate how to conduct simulations with the site and regional versions of DNDC, respectively. Part V provides basic information for uncertainty analysis with DNDC. Part VI contains six case studies demonstrating the input procedures for simulating crop yield, soil C dynamics, nitrate leaching loss, and trace gas emissions. A list of relevant publications is included in Part VII. These publications provide more information about the scientific background and applications of DNDC far beyond this User's Guide. DNDC9.3 can run in two modes: site or regional. By selecting the mode, the users will open a corresponding interface to manage their input information for the modeled site or region.
  • Authors:
    • Jones, R.
    • Hatfield, J. L.
    • Kerr, B. J.
    • Singer, J. W.
    • Moorman, T. B.
    • Kaspar, T. C.
    • Chan, A. S. K.
    • Parkin, T. B.
    • Jarecki, M. K.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 134
  • Issue: 1-2
  • Year: 2009
  • Summary: Agriculture contributes 40-60% of the total annual N2O emissions to the atmosphere. Development of management practices to reduce these emissions would have a significant impact on greenhouse gas levels. Non-leguminous cover crops are efficient scavengers of residual soil NO3, thereby reducing leaching losses. However, the effect of a grass cover crop on N2O emissions from soil receiving liquid swine manure has not been evaluated. This study investigated: (i) the temporal patterns of N2O emissions following addition of swine manure slurry in a laboratory setting under fluctuating soil moisture regimes; (ii) assessed the potential of a rye (Secale cereale L.) cover crop to decrease N2O emissions under these conditions: and (iii) quantified field N2O emissions in response to either spring applied urea ammonium nitrate (UAN) or different rates of fall-applied liquid swine manure, in the presence or absence of a rye/oat winter cover crop. Laboratory experiments investigating cover crop effects N2O emissions were performed in a controlled environment chamber programmed fora 14 h light period, 18 degrees C day temperature, and 15 degrees C night temperature. Treatments with or without a living rye cover crop were treated with either: (i) no manure: (ii) a phosphorus-based manure application rate (low manure): or (iii) a nitrogen-based manure application rate (high manure). We observed a significant reduction in N2O emissions in the presence of the rye cover crop. Field experiments were performed on a fine-loamy soil in Central Iowa from October 12, 2005 to October 2, 2006. We observed no significant effect of the cover crop on cumulative N2O emissions in the field. The primary factor influencing N2O emission was N application rate, regardless of form or timing. The response of N2O emission to N additions was non-linear, with progressively more N2O emitted with increasing N application. These results indicate that while cover crops have the potential to reduce N2O emissions, N application rate may be the overriding factor.
  • Authors:
    • Weller, S. C.
    • Kruger, G. R.
    • Davis, V. M.
    • Johnson, W. G.
  • Source: European Journal of Agronomy
  • Volume: 31
  • Issue: 3
  • Year: 2009
  • Summary: Glyphosate-resistant (GR) crops have facilitated increases in conservation tillage production practices and simplified weed control in GR corn, soybean, canola and cotton. Increased reliance on glyphosate, many times as the only active ingredient used, has resulted in weed species shifts and the evolution of weed populations resistant to glyphosate. However, weed shifts and the evolution of herbicide resistance are not new in regard to glyphosate use. Similar effects have been documented to many other historically important weed control advancements for agricultural crop production. GR crop technology was developed to utilize glyphosate for postemergence weed control and industry scientists suggested that there was little fear of weed shifts and resistance evolution due to the broad spectrum of weeds controlled by glyphosate. However, over the last decade, the most problematic weeds in agronomic cropping systems have shifted away from perennial grass and perennial broadleaf weeds to primarily annual broadleaf weeds. The evolution of several GR annual broadleaf weeds in GR cropping systems has been documented, and glyphosate resistance mechanisms in weeds are currently poorly understood.
  • Authors:
    • Six, J.
    • van Kessel, C.
    • Fonte, S. J.
    • Kong, A. Y. Y.
  • Source: Soil & Tillage Research
  • Volume: 104
  • Issue: 2
  • Year: 2009
  • Summary: Few studies address nutrient cycling during the transition period (e.g., 1-4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize-tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced N-15-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 mu m), microaggregates (53-250 mu m) and silt-and-clay (<53 mu m). We found a cropping system effect on soil N-new (i.e., N derived from N-15-fertilizer or - N-15-cover crop), with 173 kg N-new ha(-1) in the conventional system compared to 71.6 and 69.2 kg N-new ha(-1) in the low-input and organic systems, respectively. In the conventional system, more N-new was found in the microaggregate and silt-and-clay fractions, whereas, the N-new of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-N-new than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-N-new was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g (NO)-O-2-N ha(-1) day(-1)) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha(-1)) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability. (C) 2009 Elsevier B.V. All rights reserved.
  • Authors:
    • Bashan, Y.
    • Hartmann, A.
  • Source: European Journal of Soil Biology
  • Volume: 45
  • Issue: 1
  • Year: 2009
  • Summary: This special issue contains 15 papers covering topics on: the field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity; cadaverine production by A. brasilense and its possible role in plant growth promotion and osmotic stress mitigation; seedlings growth promotion by A. brasilense under normal and drought conditions; the ability of A. brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, to promote seed germination and early seedling growth in maize and soyabean; the effect of Azospirillum inoculation and nitrogen fertilizer application on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop; the impact of Azospirillum brasilense and Pseudomonas fluorescens inoculation on the wheat yield; the influence of plant growth-promoting microorganisms on the utilization of urea-N and grain yield of paddy rice; the isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars; stress-responsive indole-3-acetic acid biosynthesis by A. brasilense SM and its ability to modulate plant growth; brominated phenols as auxin-like molecules; the growth promotion effect on the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus; A. brasilense PII proteins GlnB and GlnZ; the structural organization of the glnBA region of the A. brasilense genome; colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria; and the diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of the endemic drought tolerant grass Lasiurus scindicus.
  • Authors:
    • Lal, R.
  • Source: Soil & Tillage Research
  • Volume: 102
  • Issue: 2
  • Year: 2009
  • Summary: Global energy demand of 424 EJ year-1 in 2000 is increasing at the rate of 2.2% year-1. There is a strong need to increase biofuel production because of the rising energy costs and the risks of global warming caused by fossil fuel combustion. Biofuels, being C-neutral and renewable energy sources, are an important alternative to fossil fuels. Therefore, identification of viable sources of biofuel feedstock is a high priority. Harvesting lignocellulosic crop residues, especially of cereal crops, is being considered by industry as one of the sources of biofuel feedstocks. Annual production of lignocellulosic residues of cereals is estimated at 367 million Mg year-1 (75% of the total) for the U.S., and 2800 million Mg year-1 (74.6% of the total) for the world. The energy value of the residue is 16 × 106 BTU Mg-1. However, harvesting crop residues would have strong adverse impact on soil quality. Returning crop residues to soil as amendments is essential to: (a) recycling plant nutrients (20-60 kg of N, P, K, Ca per Mg of crop residues) amounting to 118 million Mg of N, P, K in residues produced annually in the world (83.5% of world's fertilizer consumption), (b) sequestering soil C at the rate of 100-1000 kg C ha-1 year-1 depending on soil type and climate with a total potential of 0.6-1.2 Pg C year-1 in world soils, (c) improving soil structure, water retention and transmission properties, (d) enhancing activity and species diversity of soil fauna, (e) improving water infiltration rate, (f) controlling water runoff and minimizing risks of erosion by water and wind, (g) conserving water in the root zone, and (h) sustaining agronomic productivity by decreasing losses and increasing use efficiency of inputs. Thus, harvesting crop residues as biofuel feedstock would jeopardize soil and water resources which are already under great stress. Biofuel feedstock must be produced through biofuel plantations established on specifically identified soils which do not compete with those dedicated to food crop production. Biofuel plantations, comprising of warm season grasses (e.g., switch grass), short rotation woody perennials (e.g., poplar) and herbaceous species (e.g., miscanthus) must be established on agriculturally surplus/marginal soils or degraded/desertified soils. Plantations established on such soils would restore degraded ecosystems, enhance soil/terrestrial C pool, improve water resources and produce biofuel feedstocks.