• Authors:
    • Waddell, J.
    • Caesar-Tonthat, T.
    • Lenssen, A.
    • Sainju, U. M.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: Sustainable management practices are needed to enhance soil productivity in degraded dryland soils in the northern Great Plains. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and a Conservation Reserve Program (CRP) on plant biomass returned to the soil, residue C and N, and soil organic C (SOC), soil total N (STN), and particulate organic C and N (POC and PON) at the 0- to 20-cm depth. A field experiment was conducted in a mixture of Scobey clay loam (fine, smectitic, frigid Aridic Argiustolls) and Kevin clay loam (fine-loamy, mixed, superactive, frigid Aridic Argiustolls) from 1998 to 2003 near Havre, MT. Mean annualized plant biomass returned to the soil from 1998 to 2003 was greater in W-F (2.02 Mg ha-1) than in W-L and W-W-F, regardless of tillage. In 2004, residue cover was greater in CW (60%) than in other rotations, except in W-W-F. Residue amount and C and N contents were greater in NT with CW (2.47 Mg ha-1 and 963 and 22 kg ha-1, respectively) than in NT with W-L and CT with other crop rotations. The POC at 0 to 5 cm was greater in W-W-F and W-P-F (2.1-2.2 Mg ha-1) than in W-L. Similarly, STN at 5 to 20 cm was greater in CT with W-L (2.21 Mg ha-1) than in other treatments, except in NT with W-W-F. Reduced tillage and increased cropping intensity, such as NT with CW and W-L, conserved C and N in dryland soils and crop residue better than the traditional practice, CT with W-F, and their contents were similar to or better than in CRP planting.
  • Authors:
    • Owens, L. B.
    • Shipitalo, M. J.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 6
  • Year: 2006
  • Authors:
    • USDA
  • Year: 2006
  • Authors:
    • Angers, D. A.
    • VandenBygaart, A. J.
  • Source: Canadian Journal of Soil Science
  • Volume: 86
  • Issue: 3
  • Year: 2006
  • Summary: In response to Kyoto Protocol commitments, countries can elect agricultural carbon sinks to offset emissions from other sectors, but they need to verify soil organic carbon (SOC) stock change. We summarize issues we see as barriers to obtaining accurate measures of SOC change, including: soil depth, bulk density and equivalent soil mass, representation of landscape components, experimental design, and the equilibrium status of the SOC. If the entire plow depth is not considered, rates of SOC storage under conservation compared with conventional tillage can be overstated. Bulk density must be measured to report SOC stock on an area basis. More critical still is the need to report SOC stock on an equivalent mass basis to normalize the effects of management on bulk deisity. Most experiments comparing SOC under differing management have been conducted in small, flat research plots. Although results obtained from these long-term experiments have been useful to develop and validate SOC prediction models, they do not adequately consider landscape effects. Traditional agronomic experimental designs can be inefficient for assessing small changes in SOC stock within large spatial variability. Sampling designs are suggested to improve statistical power and sensitivity in detecting changes in SOC stocks over short time periods.
  • Authors:
    • Varvel, G. E.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: Sequestration and storage of carbon (C) by agricultural soils has been cited as one potential part of the solution to soil degradation and global climate change. However, C sequestration in soils is a slow and dynamic process. The objective of this study was to evaluate the effects of crop rotation and N fertilizer management on soil organic C (SOC) levels at several points in time during 18 yr of a long-term study in the Western Corn Belt. Seven cropping systems (three monoculture, two 2-yr, and two 4-yr rotations) with three levels of N fertilizer were compared. Soil samples were taken in the spring in 1984, 1992, 1998, and 2002 to a depth of 30 cm in 0- to 7.5-, 7.5- to 15-, and 15- to 30-cm increments. No differences were obtained in SOC levels in 1984 at the beginning of the study. After 8 yr, rotation significantly increased SOC 449 kg ha-1 across all cropping systems. From 1992 to 2002, SOC levels in the 0- to 7.5-cm depth decreased by 516 kg ha-1 across all cropping systems. Soil organic C levels in the 7.5- to 15-cm depths in 1992 and 2002 demonstrated similar rotation effects to those in the surface 0- to 7.5-cm, being not significantly affected from 1984 to 1992 but being significantly decreased from 1992 to 2002 (568 kg SOC ha-1 across all cropping systems). Many of the SOC gains in the surface 30 cm measured during the first 8 yr of the study were lost during the next 10 yr in all but the 4-yr cropping systems after 18 yr. The loss of SOC in this latter period occurred when depth of tillage was increased by using a tandem disk with larger-diameter disks. These results demonstrate that more than one point-in-time measurement from long-term experiments is necessary to monitor SOC changes when several management variables, such as cropping system and N fertilizer, are being used. They also indicate that apparent small changes in cultural practices, such as in depth of tillage in this experiment, can significantly change SOC dynamics in the soil. Subtle changes in cultural practices (e.g., tillage depth) can have significant long-term results, but long-term experiments are required to quantify their impact under variable climatic conditions.
  • Authors:
    • Spokas, K. A.
    • Dolan, M. S.
    • Baker, J. M.
    • Venterea, R. T.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 5
  • Year: 2006
  • Summary: Few studies have examined the impacts of rotational tillage regimes on soil carbon (C) and nitrogen (N). We measured the C and N content of soils managed under corn (Zea mays L.)-soybean (Glycine max L.) rotation following 10 and 15 yr of treatments. A conventional tillage (CT) regime employing moldboard and chisel plowing in alternate years was compared with both continuous no-till (NT) and biennial tillage (BT), which employed chisel plowing before soybean only. While masses of C and N in the upper 0.3 m under both BT and NT were higher than CT, only the BT treatment differed from CT when the entire sampled depth (0.6 m) was considered. Decreased C inputs, as indicated by reduced grain yields, may have limited C storage in the NT system. Thus, while more C was apparently retained under NT per unit of C input, some tillage appears necessary in this climate and cropping system to maximize C storage. Soil carbon dioxide (CO2) fluxes under NT were greater than CT during a drier than normal year, suggesting that C storage may also be partly constrained under NT due to wetter conditions that promote increased soil respiration. Increased temperature sensitivity of soil respiration with increasing soil moisture was also observed. These findings indicate that long-term biennial chisel plowing for corn-soybean in the upper mid-west USA can enhance C storage, reduce tillage-related fuel costs, and maintain yields compared with more intensive annual tillage.
  • Authors:
    • Hegymegi, P.
    • Gal, A.
    • Smith, D. R.
    • Omonode, R.A.
    • Vyn, T. J.
  • Source: 17th Triennial Conference of the International Soil Tillage Research Organisation (ISTRO)Conference Proceedings
  • Year: 2006
  • Summary: Few researchers have assessed the possibly interacting effects of long-term tillage and rotation practices on organic carbon (OC) sequestration in soil to depths well beyond the maximum depth of tillage operations while also studying carbon dioxide (CO2) emissions from the soil surface of those same experiments. This study was conducted from 2003 to 2005 on tillage and rotation experiments initiated 30 yrs ago in West-Central Indiana on a dark prairie soil with silty clay loam texture.. Our objectives were to determine how tillage systems such as moldboard plow (MP), chisel (CP), and no-till affected OC retention and surface soil CO2 emissions. These tillage systems were investigated in continuous corn and corn-soybean rotations. Soil OC distribution was determined from soil cores in multiple increments to a 1.0 m depth in late 2003 and early 2004. Gas fluxes from the soil surface were measured at weekly or biweekly intervals for up to 14 weeks in the corn growing seasons of 2004 and 2005. The increase in soil OC with no-till relative to moldboard plow averaged just 8 t/ha (or 5% on an equivalent mass basis) in both rotations. Rotation systems had little impact on OC; continuous corn was not superior to the soybean-corn rotation in either no-till or moldboard plow systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC, relative to no-till, in the 30-50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Growing season CO2 emissions were significantly affected by rotation but not by tillage treatments. . CO2 emission was higher under continuous corn than with corn following soybean. Our results suggest that conclusions about soil OC gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken much deeper than the deepest depth of direct soil disturbance by tillage implements. After 3 decades of consistent tillage and crop rotation management, tillage system impacts on overall soil OC retention and seasonal CO2 emissions were less than expected. Continuous corn did not store more soil OC than rotation corn, perhaps because continuous corn emitted more CO2 from the soil surface than corn- soybean rotation systems.
  • Authors:
    • Janzen, H. H.
  • Source: Soil Biology and Biochemistry
  • Volume: 38
  • Issue: 3
  • Year: 2006
  • Summary: Rapidly rising concentrations of atmospheric CO2 have prompted a flurry of studies on soils as potential carbon (C) 'sinks'. Sequestering C in soils is often seen as a 'win-win' proposition; it not only removes excess CO2 from the air, but also improves soils by augmenting organic matter, an energy and nutrient source for biota. But organic matter is most useful, biologically, when it decays. So we face a dilemma: can we both conserve organic matter and profit from its decay? Or must we choose one or the other? In this essay, I contemplate the merits, first of building soil C and then of decaying (losing) it, partly from a historical perspective. I then consider the apparent trade-off between accrual and decay, and reflect on how the dilemma might be resolved or assuaged. These fledgling thoughts, offered mostly to stir more fruitful debate, include: finding ways to increase C inputs to soil; seeking to optimize the timing of decay; and understanding better, from an ecosystem perspective, the flows of C, rather than only the stocks. Carbon sequestration is a sound and worthy goal. But soil organic matter is far more than a potential tank for impounding excess CO2; it is a relentless flow of C atoms, through a myriad of streams--some fast, some slow--wending their way through the ecosystem, driving biotic processes along the way. Now, when we aim to regain some of the C lost, we may need new ways of thinking about soil C dynamics, and tuning them for the services expected of our ecosystems. This objective, perhaps demanding more biology along with other disciplines, is especially urgent when we contemplate the stresses soon to be imposed by coming global changes.
  • Authors:
    • Rolston, D. E.
    • van Kessel, C.
    • King, A. P.
    • Six, J.
    • Lee, J.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 3
  • Year: 2006
  • Summary: There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25{degrees}C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.
  • Authors:
    • Zhang, F. S.
    • Halvorson, A. D.
    • Mosier, A. R.
    • Liu, X. J.
  • Source: Plant and Soil
  • Volume: 280
  • Issue: 1-2
  • Year: 2006
  • Summary: To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2-3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea-ammonium nitrate (UAN, 224 kg N ha)1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 lg N m)2 h)1, 60.5 to 92.4 lg N m)2 h)1, )0.8 to 0.5 lg C m)2 h)1, and 42.1 to 81.7 mg C m)2 h)1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.