• Authors:
    • Fowler, D. B.
  • Source: Crop Science
  • Volume: 52
  • Issue: 1
  • Year: 2012
  • Summary: The traditional winter wheat ( Triticum aestivum L.) production area on the North American Great Plains extended as far north as southern Alberta, Canada. This paper reviews a research and development program initiated with the objective of expanding production north and east into higher winter stress areas of the Canadian prairies. Winter survival was considered the main limitation to production in this region. However, the widespread adoption of no-till seeding into standing stubble for snow trapping has proven to be a successful method of overwintering wheat if cold hardy cultivars are grown using recommended management practices. Plant breeding improvements have increased production potential and winter wheat has become western Canada's third largest wheat class. Average commercial yields of 149, 125, and 118% of spring wheat in Manitoba, Saskatchewan, and Alberta, respectively, have demonstrated the high yield potential that can be realized while employing environmentally sustainable crop management practices. In light of current environmental concerns, changing weather patterns, diminishing world wheat reserves, and an ever increasing global population to feed, one would assume that winter wheat production in western Canada would be widely embraced. However, marketing obstacles and difficulties inserting winter wheat into rotations, both of which have a direct influence on farmers' net returns, remain to be overcome for this potential to be fully realized.
  • Authors:
    • Grace, P. R.
    • Ogle, S.
    • Paustian, K.
    • Antle, J.
    • Basso, B.
    • Aggarwal, P. K.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 146
  • Issue: 1
  • Year: 2012
  • Summary: Soil organic carbon sequestration rates over 20 years based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to determine the potential for soil C sequestration in wheat-based production systems on the Indo-Gangetic Plain (IGP). The C sequestration potential of rice-wheat systems of India on conversion to no-tillage is estimated to be 44.1 Mt C over 20 years. Implementing no-tillage practices in maize-wheat and cotton-wheat production systems would yield an additional 6.6 Mt C. This offset is equivalent to 9.6% of India's annual greenhouse gas emissions (519 Mt C) from all sectors (excluding land use change and forestry), or less than one percent per annum. The economic analysis was summarized as carbon supply curves expressing the total additional C accumulated over 20 year for a price per tonne of carbon sequestered ranging from zero to USD 200. At a carbon price of USD 25 Mg C -1, 3 Mt C (7% of the soil C sequestration potential) could be sequestered over 20 years through the implementation of no-till cropping practices in rice-wheat systems of the Indian States of the IGP, increasing to 7.3 Mt C (17% of the soil C sequestration potential) at USD 50 Mg C -1. Maximum levels of sequestration could be attained with carbon prices approaching USD 200 Mg C -1 for the States of Bihar and Punjab. At this carbon price, a total of 34.7 Mt C (79% of the estimated C sequestration potential) could be sequestered over 20 years across the rice-wheat region of India, with Uttar Pradesh contributing 13.9 Mt C.
  • Authors:
    • Gruber, S.
    • Pekrun, C.
    • Möhring, J.
    • Claupein, W.
  • Source: Soil & Tillage Research
  • Volume: 121
  • Year: 2012
  • Summary: The study provides information to more reliably estimate the value of conservation tillage in a temperate climate. Tillage effects on yield and weeds were evaluated in field experiments at two sites in SW Germany between 1999 and 2010. Tillage varied at site Ihinger Hof from mouldboard plough (P), chisel plough (CP), rototiller (RTT), varying P and CP (VAR), to no tillage (NT), partially combined with stubble tillage (S). Tillage at site Meiereihof was S/P, S/CP, and NT. Crop rotations included winter wheat (WW, Triticum aestivum), triticale (TR, Triticosecale), oat (OA, Avena sativa), silage maize (SM, Zea mays) and oilseed rape (OSR, Brassica napus) at Ihinger Hof, and winter wheat, spring barley (SB, Hordeum vulgare), silage maize, sugar beets (SBE. Beta vulgaris) and faba bean (FB, Vicia faba) at Meiereihof. At Ihinger Hof, tillage had an effect on yield (P > F = 0.0049), but no effects were found on crop emergence and crop density. Tillage effects on yield were consistent across crops though differences between crops appeared to exist. The yield of S/P, the standard tillage, was 8.5 (WW), 7.7 (TR), 4.7 (OA), 18.3 (SM) and 4.1 (OSR) t DM ha(-1) at Ihinger Hof, with yield under NT always significantly lower than S/P by 7.3% on average for all crops. At Meiereihof, yields ranged from 7.2 to 8.0 (WW), 3.3 to 4.2 (SB), 19.8 to 21.5 (SM) and 3.1 to 3.2 (FB) t DM ha(-1), and 61.3 to 67.6 FM ha(-1) for SBE. Yield was reduced by 4.5% from S/P to S/CP (P > F = 0.0516), and by about 10% from S/P to NT (P > F = 0.0009). Weed density ranged between 0.5 and 44 plants m(-2) at Ihinger Hof and was higher in treatments without stubble tillage and under non-inversion tillage, though significance differed for the different classes of weeds. NT led to weed infestation about 2-20 times higher than S/P. The interaction crop x treatment indicated that factors other than tillage influenced weed infestation. It is unlikely that weed infestation and reduced yield will be problems in temperate climates if soil disturbance through tillage is reduced. Non-inversion tillage can easily replace inversion tillage, and stubble tillage can be added to primary tillage if needed to reduce weeds. Since no specific tillage method was unequivocally superior to another one, any method well suited to specific regional and farm conditions can be adopted successfully.
  • Authors:
    • Hansen, N. C.
    • Allen, B. L.
    • Baumhardt, R. L.
    • Lyon, D. J.
  • Source: Field Crops Research
  • Volume: 132
  • Year: 2012
  • Summary: The Great Plains region of the United States is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitation falling during hot summer months. The prevailing cropping system is a two-year rotation of wheat and summer fallow. The adoption of no-till practices has resulted in greater precipitation storage and use efficiency, which has led to greater cropping intensity, higher productivity, more diverse crop rotations, and improvements in soil properties. In Colorado, for example, a no-till rotation of winter wheat-maize-fallow increased total annualized grain yield by 75% compared to winter wheat-summer fallow. Soil erosion was reduced to just 25% of that from a conventional tillage wheat-summer fallow system. The primary challenge with reducing fallow frequency is the increase in yield variability and risk of crop failure. Improved approaches for choosing crop or fallow are being developed based on soil water content and forecasted weather. Development of alternative crops, crop rotations, and integrated livestock systems that are sustainable from both economic and ecological perspectives is an on-going effort. Other research is addressing adaptation of cropping practices to climate change and the potential for dryland biomass crop production for the developing biofuel industry.
  • Authors:
    • Harker, K. N.
    • O'Donovan, J. T.
    • Blackshaw, R. E.
    • Johnson, E. N.
    • Lafond, G. P.
    • May, W. E.
  • Source: Canadian Journal of Plant Science
  • Volume: 92
  • Issue: 4
  • Year: 2012
  • Summary: Canola seed costs are substantial, but only a relatively small proportion of planted seeds actually emerge as seedlings. Direct-seeded (no-till) experiments were conducted from 2008 to 2010 at four western Canada locations [Lacombe AB (2007-2010), Lethbridge AB, Indian Head SK, and Scott SK] to determine the influence of cultivar (hybrid vs. open-pollinated), seeding speed (6.4 vs. 11.2 k h -1), and seeding depth (1 vs. 4 cm) on the emergence, maturity, yield, and seed quality of glyphosate-resistant canola. Canola emergence density was positively associated with precipitation levels surrounding the time of seeding; other site and environmental predictors such as soil temperature, soil texture, soil organic matter, latitude and longitude did not consistently influence canola emergence density. The agronomic performance of hybrid canola, including seed yield and quality, was usually superior to open-pollinated canola, but there was no difference in emergence density between the two cultivars. However, the hybrid cultivar emerged 1 d earlier, grew faster and covered the ground more quickly than the open-pollinated cultivar; important results from a crop-weed competition standpoint. Although seeding depth did not influence average canola yield, it often had a major impact on canola emergence density. Under moist conditions, average canola emergence improved from 37 to 62% as seeding depth decreased from 4 to 1 cm, respectively. Seeding at a depth of 1 vs. 4 cm also decreased days to emergence, increased canola ground cover, decreased days to flowering and days to maturity and tended to decrease green seed levels. Relatively high canola emergence rates can reduce the need for additional herbicide applications, herbicide input costs and selection pressure for herbicide resistance. Relatively high canola stand densities can improve the ability of canola to successfully tolerate and accommodate biotic and abiotic stress.
  • Authors:
    • Vera, C. L.
    • Malhi, S. S.
    • Kutcher, H. R.
    • Willenborg, C. J.
    • Hall, L. M.
    • Dosdall, L. M.
    • Klein-Gebbinck, H.
    • Smith, E. G.
    • Lupwayi, N. Z.
    • Blackshaw, R. E.
    • O'Donovan, J. T.
    • Turkington, T. K.
    • Harker, K. N.
    • McLaren, D. L.
    • Grant, C. A.
    • May, W. E.
    • Lafond, G. P.
    • Gan, Y.
  • Source: Canadian Journal of Plant Science
  • Volume: 92
  • Issue: 2
  • Year: 2012
  • Summary: Relatively high prices and increasing demand for canola ( Brassica napus L.) have prompted growers to produce more canola on more cropland. Here we determine if canola seed yield and oil concentration can be increased over current levels with high levels of crop inputs. From 2008 to 2010, direct-seeded experiments involving two seeding rates (75 vs. 150 seeds m -2), two nitrogen rates (100 vs. 150% of soil test recommendation), and the presence or absence of polymer-coated nitrogen or fungicides, were conducted at eight western Canada locations in canola-wheat-canola or continuous canola rotations. Herbicides, insecticides and fertilizers other than nitrogen were applied as required for optimal canola production. Increasing recommended nitrogen rates by 50% increased canola yields by up to 0.25 Mg ha -1. High (150 seeds m -2) versus lower (75 seeds m -2) seeding rates increased canola yields by 0.07 to 0.16 Mg ha -1. Fungicide treatment or polymer-coated nitrogen blended with uncoated urea increased canola yields by 0.10 Mg ha -1 in 2010, but not in 2008. The highest canola input combination treatment following wheat (3.50 Mg ha -1) yielded substantially more than the same high input treatment following canola (3.22 Mg ha -1). Average site yields were influenced by site conditions such as soil organic matter, days to maturity, and temperature, but these site and environmental predictors did not alter treatment rankings. Using higher than the soil test recommended rate of nitrogen or planting 150 versus 75 seeds m -2 increased canola yields consistently across western Canada. Canola oil concentration varied among canola cultivars, but was consistently low when N rates were high (150% of recommended). Higher than normal seeding rates led to high canola seed oil concentration in some cases, but the effect was inconsistent.
  • Authors:
    • Avares Filho, J. T.
    • Feltran, C. T. M.
    • Oliveira, J. F. de
    • Almeida, E. de
  • Source: Revista Brasileira de Ciência do Solo
  • Volume: 36
  • Issue: 1
  • Year: 2012
  • Summary: Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg -1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Parana State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR= a D b G c and PR′= a D b G c M d), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91% of PR variability, compared to 82% of the other model.
  • Authors:
    • Barbera, V.
    • Poma, I.
    • Gristina, L.
    • Novara, A.
    • Egli, M.
  • Source: Land Degradation & Development
  • Volume: 23
  • Issue: 1
  • Year: 2012
  • Summary: A calcareous and clayey xeric Chromic Haploxerept of a long-term experimental site in Sicily (Italy) was sampled (0-15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual-layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2.75-times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7.4 Mg C ha -1 y -1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 m) and large microaggregates (75-250 m) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short-term, organic C can be accumulated.
  • Authors:
    • Barbarick, K. A.
    • Ippolito, J. A.
    • McDaniel, J.
    • Hansen, N. C.
    • Peterson, G. A.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 150
  • Year: 2012
  • Summary: Dryland agroecosystems are generally ideal environments for recycling biosolids. However, what is the efficacy of biosolids addition to a no-till dryland management agroecosystem? From 2000 to 2010, we studied application of biosolids from the Littleton/Englewood, CO Wastewater Treatment Plant versus commercial N fertilizer in dryland no-till wheat ( Triticum aestivum, L.)-fallow (WF) and wheat-corn ( Zea mays, L.)-fallow (WCF) rotations at a site approximately 40 km east of Byers, CO. We tested if biosolids would produce the same yields and grain P, Zn, and Ba concentrations as an equivalent rate of N fertilizer, that biosolids-borne P, Zn, and Ba would not migrate below the 10 cm soil depth, and that biosolids application would result in the same quantity of residual NO 3-N as the equivalent N fertilizer rate. Biosolids and N fertilizer produced similar wheat and corn yields; but, biosolids application resulted in smaller wheat grain Ba due to the soil formation of BaSO 4. Biosolids application produced greater NO 3-N concentrations than N fertilizer in the 30-60 and 60-90 cm depths for the WF rotation and all but the 5-10 and 120-150 cm depths for the WCF rotation. We concluded that biosolids application in a no-till managed dryland agroecosystem is an efficacious method of recycling this nutrient source.
  • Authors:
    • Bates, R. T.
    • Gallagher, R. S.
    • Curran, W. S.
    • Harper, J. K.
  • Source: Agronomy Journal
  • Volume: 104
  • Issue: 2
  • Year: 2012
  • Summary: Conservation tillage for corn (Zea mays L.) production has greatly reduced the soil erosion potential in these systems, but relies heavily on herbicides to manage weeds. Overreliance on herbicides can lead to the development of herbicide-resistant weed communities and increase the risk of ground and surface water contamination by residual herbicides. This study evaluates the integration of various mechanical soil/weed management implements and herbicide programs for surface residue cover, weed control, corn productivity, and economic net returns. A pre-plant vertical coulter/rotary harrow tended to control small annual weeds as well as a standard burn down herbicide program, but reduced surface residue cover by 15% compared to the no-till check treatments. The high residue rotary hoe had little effect on surface residue cover, but provided inconsistent early-season weed control. The high residue inter-row cultivator resulted in 23% residue cover compared to 50% in the no-till treatments, but reduced weed biomass by 53% without any supplemental residual herbicides and 88% with a banded residual herbicide compared to the weedy check treatment. Crop productivity and net return data suggest that integrating the vertical coulter/rotary harrow, high residue cultivator, and banded residual herbicide program could reduce herbicide ai rates by 70% and still achieve similar corn yields and economic returns as the herbicide intensive systems. Such integrated mechanical-chemical systems will increase the crop management complexity for farmers, which may hinder adoption. Soil erosion potential of the integrated systems requires further in-depth evaluation.