Home
Country
Climate
Cropping System
Country
USA
Brazil
Canada
China
India
Australia
Spain
Argentina
France
Germany
Mexico
UK
Italy
South Africa
Chile
Switzerland
Denmark
Netherlands
New Zealand
Pakistan
Uruguay
Indonesia
Finland
Ireland
Norway
Sweden
Philippines
Republic of Korea
Russia
Climate
Humid subtropical (Cwa, Cfa)
Temperate (C)
Warm summer continental/Hemiboreal (Dsb, Dfb, Dwb)
Steppe (BSh, BSk)
Continental (D)
Hot summer continental (Dsa, Dfa, Dwa)
Marintime/Oceanic (Cfb, Cfc, Cwb)
Mediterranean (Csa, Csb)
Tropical savannah (Aw)
Tropical (A)
Desert (BWh, BWk)
Semiarid
Continental subarctic/Boreal/Taiga (Dsc, Dfc, Dwc)
Tropical monsoonal (Am)
Tropical rainforest (Af)
Arid
Continental subarctic (Dfd, Dwd)
Tundra (ET)
Cropping System
No-till cropping systems
Till cropping systems
Maize
Wheat
Soybean
Cover cropping
Conservation cropping systems
Conventional cropping systems
Crop-pasture rotations
Irrigated cropping systems
Sorghum
Dryland cropping system
Oats
Continuous cropping
Legumes
Barley
Cereal crops
Cotton
Canola
Organic farming systems
Rye
Grazing systems
Fruit
Intercropping
Vegetables
Double Cropping
Perennial agriculture
Corn
Potatoes
Citrus
Tree nuts
Oil palm
Keywords
corn
carbon sequestration
crop rotation
tillage
soil organic matter
Corn
nitrogen
crop residue
soil organic carbon
nitrogen fertilization
carbon
Soil organic carbon
crop yield
weed management
organic carbon
no-tillage
management
NITROGEN
emissions
climate change
soil carbon
Crop yield
fertilizer
nitrous oxide
soil quality
Carbon sequestration
Kansas
Microbial biomass
Carbon
NO-TILL
Vetch
fallow
herbicides
rice
Nebraska
Soil quality
conservation tillage
greenhouse gases
CONSERVATION TILLAGE
SYSTEMS
Great Plains
carbon dioxide
sunflower
N2O
Romania
Saskatchewan
Triticum aestivum
crop rotations
cropping systems
grain yield
phosphorus
sequestration
Alberta
Conservation tillage
Soil fertility
Soil organic matter
nitrogen fertilizers
soil erosion
Crop residues
Triticum
fertilization
fertilizers
matter
reduced tillage
soil management
soil physical properties
MANAGEMENT
Montana
Mulching
Zea mays
soil compaction
sustainability
LONG-TERM TILLAGE
Millet
Nitrogen
Texas
Weed control
climate
manure
organic matter
residue management
rotations
soil properties
yield
CO2
Crop rotation
Fallow
Ohio
Pea
Reduced tillage
bulk density
cover crops
crop yields
greenhouse gas
millet
mulch
rotation
runoff
soil
soil water
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
1980
2015
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
1
2
...
27
28
29
30
31
32
33
...
132
133
291.
Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems
Authors
:
Chenu, C.
Burlot, A.
Barre, P.
Virto, I.
Source:
Biogeochemistry
Volume:
108
Issue:
1-3
Year:
2012
Summary:
Conversion to no-till (NT) is usually associated to increased soil organic carbon (SOC) stocks in comparison to inversion tillage (IT). However, an important and unexplained variability in the changes in SOC with NT adoption exists, which impedes accurate prediction of its potential for C sequestration. We performed a meta-analysis with pedo-climatic and crop factors observed to influence SOC storage under NT at local and regional scales, in order to determine those better explaining this variability at a global scale. We studied SOC stocks (0-30 cm) in an equivalent soil mass, climatic and soil characteristics in 92 NT-IT paired cases. A sub-base with the 35 pairs providing C inputs was used to test their effect. Greater SOC stocks were observed with NT, with a smaller difference than often described (6.7%, i.e. 3.4 Mg C ha(-1)). Crop C inputs differences was the only factor significantly and positively related to SOC stock differences between NT and IT, explaining 30% of their variability. The variability in SOC storage induced by NT conversion seems largely related to the variability of the crop production response. Changes at the agro-ecosystem level, not only in soil, should be considered when assessing the potential of NT for C sequestration.
292.
Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas
Authors
:
Urquiaga, S.
Martellotto, E. E.
Jantalia, C. P.
Alves, B. J. R.
Alvarez, C. R.
Costantini, A.
Alvarez, C.
Source:
NUTRIENT CYCLING IN AGROECOSYSTEMS
Volume:
94
Issue:
2-3
Year:
2012
Summary:
The aim of this study was to analyze the influence of different crop sequences (soybean-corn and soybean-soybean) and tillage systems (no tillage and reduced tillage) on nitrous oxide (N2O) soil emissions under field conditions. The experiment was carried out in Manfredi, Crdoba province, Argentina on an Entic Haplustoll and N2O emissions were measured in the field during a year. N2O fluxes were low during winter, but in late spring it peaked. For fallow, N-NO3-content was the most important variable to explain N2O emissions. For growing period water-filled pores was the main variable explaining N2O emissions. Nitrogen fertilization of corn crop increased N2O-N emissions, whereas no significant differences were found due to the tillage system. Measured annual N2O-N emissions were generally lower than those calculated using the methodology proposed by the Intergovernmental Panel on Climate Change.
293.
Climate change effects on organic carbon storage in agricultural soils of northeastern Spain.
Authors
:
Easter, M.
Alvaro-Fuentes, J.
Paustian, K.
Source:
AGRICULTURE ECOSYSTEMS & ENVIRONMENT
Volume:
155
Year:
2012
Summary:
The interactive effects of climate change and atmospheric CO 2 rise could have potential effects on both soil organic carbon (SOC) storage and the capability of certain management practices to sequester atmospheric carbon (C) in soils. In this study, we present the first regional estimation of SOC stock changes under climate change in Spanish agroecosystems. The Century model was applied over a 80-yr period (i.e., from 2007 to 2087) to an agricultural area of 40,498 km 2 located in northeast Spain under five different climate scenarios. The model predicted an increase in SOC storage in the 0-30 cm soil depth in all the climate change scenarios tested (i.e., ECHAM4-A2, ECHAM4-B2, CGCM2-A2 and CGCM2-B2). Among climate change scenarios, SOC stock changes ranged from 0.15 to 0.32 Tg C yr -1. The Century model also predicted differences in SOC sequestration among agricultural classes. At the end of the simulation period, the greatest SOC stocks were found in the rainfed arable land under monoculture and no-tillage (MC-NT) class and in the grape-olive (GO) class with average stocks greater than 80 Mg C ha -1. On the contrary, both the alfalfa (AF) and the cereal-fallow (CF) classes showed the lowest SOC stocks with predicted values lower than 60 Mg C ha -1. Under climate change conditions, Spanish agricultural soils could act as potential atmospheric C sinks. Nevertheless, both the magnitude of the change in climate and the adoption of beneficial management practices could be critical in maximizing SOC sequestration.
294.
Soil carbon sequestration in the dryland cropping region of the Pacific Northwest
Authors
:
Huggins, D. R.
Brown, T. T.
Source:
Journal of Soil and Water Conservation
Volume:
67
Issue:
5
Year:
2012
Summary:
Knowledge of soil organic carbon (SOC) changes that occur under different agricultural practices is important for policy development, carbon (C) marketing, and sustainable land management. Our objective was to quantify agricultural impacts on SOC sequestration for dryland cropping systems in different agroclimatic zones (ACZs) of the Pacific Northwest (PNW). Data from 131 SOC studies were analyzed to assess land management-induced changes in SOC, including the conversion of native ecosystems to agricultural crops, conversion from conventional tillage (CT) to no-tillage (NT), and alternative crop rotations and management practices. Cumulative probabilities of SOC change were developed for assessing uncertainties inherent in SOC studies and for informing SOC markets. These analyses showed that 75% of converted native land lost at least 0.14 to 0.70 Mg C ha(-1) y(-1) (0.06 to 0.31 tn C ac(-1) yr(-1)) over an average of 55 to 74 years depending on ACZ. Converting from CT to NT was predicted to increase SOC at least 0.12 to 0.21 Mg C ha(-1) y(-1) (0.05 to 0.09 tn C ac(-1) yr(-1)) over 10 to 12 years in 75% of studies analyzed and was also ACZ specific. Compared to annual cropping, mixed perennial-annual systems would be expected to gain at least 0.69 Mg C ha(-1) y(-1) (0.31 tn C ac(-1) ha(-1)) over 12 years in 75% of ACZ 2 sites. Other conclusions were that (1) SOC databases are lacking for low precipitation areas of the PNW; such as the dryland wheat-fallow region; (2) baseline sampling of SOC prior to management change is largely nonexistent for PNW databases except for a few notable cases; (3) soil erosion processes have likely impacted SOC and contributed to large variability among studies; (4) sampling methodologies and analyses for SOC have been inconsistent, thereby contributing to SOC variability; and (5) a validated C model for the PNW would aid evaluation of SOC changes due to management, particularly for specific farms and sites with unique SOC history and circumstances.
295.
Corn yields and no-tillage affects carbon sequestration and carbon footprints.
Authors
:
Reitsma, K.
Carlson, G. C.
Gelderman, R. H.
Stone, J.
Clay, S. A.
Chang, J. Y.
Clay, D. E.
Jones, M.
Janssen, L.
Schumacher, T.
Source:
Agronomy Journal
Volume:
104
Issue:
3
Year:
2012
Summary:
The corn (Zea mays L.)-based ethanol carbon footprint is impacted by many factors including the soil's C sequestration potential. The study's objective was to determine the South Dakota corn-based ethanol surface SOC sequestration potential and associated partial C footprint. Calculated short-term C sequestration potentials were compared with long-term sequestration rates calculated from 95,214 producer soil samples collected between 1985 and 2010. National Agricultural Statistics Service (NASS) grain yields, measured root/shoot ratios and harvest indexes, soil organic C (SOC) and nonharvested C (NHC) first-order rate constants, measured SOC benchmarks [81,391 composite soil samples (0-15 cm) collected between 1985 and 1998], and 34,704 production surveys were used to calculate the short-term sequestration potentials. The SOC short-term, area weighted sequestration potential for the 2004 to 2007 time period was 181 kg C (ha * yr) -1. This relatively low rate was attributed to a drought that reduced the amount of NHC returned to soil. For the 2008 to 2010 time period, the area weighted short-term sequestration rate was 341 kg (ha * yr) -1. This rate was similar to the long-term measured rate of 368 kg C (ha * yr) -1. Findings from these independent SOC sequestration assessments supports the hypothesis that many of the regions surface soils are C sinks when seeded with corn. Based on short-term C sequestration rates, corn yields, and the corn conversion rate to ethanol, the area weighted surface SOC footprints for the 2004 to 2007 and 2008 to 2010 time periods was -10.4 and -15.4 g CO 2 equ MJ -1, respectively.
296.
An integrated mechanical and chemical method for managing prostrate cover crops on permanent beds
Authors
:
Finlay, L. A.
Hulugalle, N. R.
Weaver, T. B.
Source:
Renewable Agriculture and Food Systems
Volume:
27
Issue:
2
Year:
2012
Summary:
Cover crops in minimum or no-tilled systems are usually killed by applying one or more herbicides, thus significantly increasing costs. Applying herbicides at lower rates with mechanical interventions that do not disturb or bury cover crop residues can, however, reduce costs. Our objective was to develop a management system with the above-mentioned features for prostrate cover crops on permanent beds in an irrigated Vertisol. The implement developed consisted of a toolbar to which were attached spring-loaded pairs of parallel coulter discs, one set of nozzles between the individual coulter discs that directed a contact herbicide to the bed surfaces to kill the cover crop and a second set of nozzles located to direct the cheaper glyphosate to the furrow to kill weeds. The management system killed a prostrate cover crop with less trafficking, reduced the use of more toxic herbicides, carbon footprint, labor and risk to operators. Maximum depth of compaction was more but average increase was less than that with the boom sprayer control.
297.
Conservation agriculture in Laos: Diffusion and determinants for adoption of direct seeding mulch-based cropping systems in smallholder agriculture
Authors
:
Tivet, F.
Khamxaykhay, C.
Rattanatray, B.
Jullien, F.
Quoc, H. T.
Lestrelin, G.
Source:
Renewable Agriculture and Food Systems
Volume:
27
Issue:
1
Year:
2012
Summary:
Over the past half-century, major efforts have been made worldwide to develop sustainable alternatives to agricultural tillage. In line with these efforts, two main research development initiatives have supported the experimentation and dissemination of conservation agriculture (CA) in Laos. Here we present the results of a 4-year monitoring and evaluation study conducted in 21 villages targeted for dissemination. In a context of rapid transition to intensive commercial agriculture in Laos, CA has become an important constituent of agricultural landscapes. However, there are significant variations in adoption rates across the study region. Statistical and qualitative evidence suggests that experimentation and adoption are not contingent upon farm-level variables such as capital, labor, age and education. While access to land helps shape local decision-making, the land tenure threshold under which farmers are not willing to experiment with alternative cropping systems is relatively low and highly variable in both space and time. Rather, experience and awareness of land degradation, production costs, social cohesion and leadership appear to be key factors in explaining most variations in local adoption rates. These results indicate that the practice of CA is not necessarily incompatible with smallholder farming. However, while complex crop associations and rotations are necessary for integrated weed control and reduced chemical use, their diffusion would require a broader transformation of the agricultural industry and the current market demand.
298.
Eggplant crop in no tillage system under different irrigation depths.; Desempenho do cultivo da berinjela em plantio direto submetida a diferentes laminas de irrigacao.
Authors
:
Rocha, H. S.
Souza, A. P. de
Carvalho, D. F. de
Lima, M. E. de
Guerra, J. G. M.
Source:
Revista Brasileira de Engenharia AgrÃcola e Ambiental
Volume:
16
Issue:
6
Year:
2012
Summary:
This study was carried out in the municipality of Seropedica-RJ, in order to determine, under organic farming and no tillage system, the yield of eggplants under different irrigation depths and cropping systems (intercropped with legumes and alone). The experimental design was in randomized blocks in a split plot design with four replications. The plots were characterized by the treatments corresponding to different water depths (40, 70, 100, 120% ETc), and the sub plots, the intercropping systems with cowpea and eggplant alone. Cropping systems did not influence the final yield of eggplant. However, considering the different irrigation depths, the highest commercial yield (65.41 Mg ha -1) was obtained for a total depth of 690.04 mm (106.8% ETc). The lower applied depth provided lower quality of fruit compared with that observed in the higher depths. The rate of fruit discard was 3 and 14%, respectively, for the higher and lower depths of irrigation.
299.
Effect of conservation agriculture management practices on maize productivity and selected soil quality indices under South Africa dryland conditions.
Authors
:
Kutu, F. R.
Source:
African Journal of Agricultural Research
Volume:
7
Issue:
26
Year:
2012
Summary:
Conservation agriculture experiment was conducted under irrigated and dryland conditions during 2007/2008-summer cropping season to determine a suitable soil-crop management practice for increase maize yield. The study consisted of tillage practices (conventional, minimum and zero), cropping systems (sole and intercrop plots) and fertilizer regimes (unfertilized control, low, adjusted low and optimum) as treatments. Minimum and zero tillage practices constituted the conservation agriculture tillage practices while supplementation of low fertilizer rate with seed inoculation using growth enhancing microbial inoculant constituted the adjusted low fertilizer rate. Fertilizer application gave a significant (P
300.
No-tillage and high-residue practices reduce soil water evaporation.
Authors
:
Horwath, W. R.
Wroble, J. F.
Munk, D. S.
Wallender, W. W.
Singh, P. N.
Mitchell, J. P.
Hogan, P.
Roy, R.
Hanson, B. R.
Source:
California Agriculture
Volume:
66
Issue:
2
Year:
2012
Summary:
Reducing tillage and maintaining crop residues on the soil surface could improve the water use efficiency of California crop production. In two field studies comparing no-tillage with standard tillage operations (following wheat silage harvest and before corn seeding), we estimated that 0.89 and 0.97 inches more water was retained in the no-tillage soil than in the tilled soil. In three field studies on residue coverage, we recorded that about 0.56, 0.58 and 0.42 inches more water was retained in residue-covered soil than in bare soil following 6 to 7 days of overhead sprinkler irrigation. Assuming a seasonal crop evapotranspiration demand of 30 inches, coupling no-tillage with practices preserving high residues could reduce summer soil evaporative losses by about 4 inches (13%). However, practical factors, including the need for different equipment and management approaches, will need to be considered before adopting these practices.