• Authors:
    • Laurent, F.
    • Ruelland, D.
  • Source: Journal of Hydrology
  • Volume: 409
  • Issue: 1-2
  • Year: 2011
  • Summary: The SWAT model was used to model the impacts of climate, soils and agricultural practices on nitrate flows in a 1310 km 2 catchment in western France. Spatialized data were used for natural features (climate, soil, topography), while agricultural activities, finely represented by crop sequences over 3 years, and their associated cultural practices were mapped by remote sensing. The model was calibrated and validated for discharge and nitrate flows at a gauging station. Results are analyzed with respect to leaching for each crop sequence and for each soil type, as nitrate leaching is highly sensitive to the soil and the crop sequence. The lowest risks were found in clayey soils and the highest in sandy soils and/or in sequences including maize. In collaboration with local stakeholders, five scenarios of alternative practices were simulated to evaluate their consequences for nitrogen flows: reduced fertilization, catch crops, shallow cultivation, no-till with catch crops and filter strips. The impacts of the conversion of a pasture into wheat and rapeseed were also assessed. At the catchment gauging station, our 9-year simulations showed a reduction in nitrate flow of 8% with filters strips, 11% with catch crops, 12% with no-till with catch crops, and 15% with reduced fertilization. Shallow cultivation had no impact on nitrate flow. Inversely, the conversion of temporary pastures, which accounts for 32% of the catchment area, to cereals and rapeseed increased nitrate flow by 18%. The impacts of each scenario varied in accordance with leaching at the parcel scale and with the proportion of area affected by the practice. The results show that modelling can improve our understanding of the impacts of agricultural practices on water quality at different scales.
  • Authors:
    • Li, W.
    • He, R.
  • Source: Journal of Yunnan Agricultural University
  • Volume: 26
  • Issue: 4
  • Year: 2011
  • Summary: Jianghuai region is one of the major grain producing areas in China, where planting has high energy consumption. In addition, greenhouse gases displacement of planting is larger than ever, and the phenomenon of straw burned is extremely serious. To solve the problem, the multifunctional no-till wheat and paddy planter was designed with the technique of mechanized cultivation of energy-saving emission reduction. Combing with controlled traffic tillage and strip chopping anti-blocking mechanism, it could be used to returning corn stalks to the filed, fertilizing, seeding, covering and so on. The filed experiment indicates that the machine can decrease operating power consumption, and its steering ability is outstanding.
  • Authors:
    • Shi, X.
    • Shen, Y.
    • Zhang, X.
    • McLaughlin, N. B.
    • Fan, R.
    • Liang, A.
  • Source: Acta Agriculturae Scandinavica, Section B - Soil & Plant Science
  • Volume: 61
  • Issue: 6
  • Year: 2011
  • Summary: Soil aggregate-size distribution and soil aggregate stability are used to characterize soil structure. Quantifying the changes of structural stability of soil is an important element in assessing soil and crop management practices. A 5-year tillage experiment consisting of no till (NT), moldboard plow (MP) and ridge tillage (RT), was used to study soil water-stable aggregate size distribution, aggregate stability and aggregate-associated soil organic carbon (SOC) at four soil depths (0-5, 5-10, 10-20 and 20-30 cm) of a clay loam soil in northeast China. Nonlinear fractal dimension (D m) was used to characterize soil aggregate stability. No tillage led to a significantly greater aggregation for >1 mm aggregate and significant SOC changes in this fraction at 0-5 cm depth. There were significant positive relationships between SOC and >1 mm aggregate, SOC in each aggregate fraction, but there was no relationship between soil aggregate parameters (the proportion of soil aggregates, aggregate-associated SOC and soil stability) and soil bulk density. After 5 years, there was no difference in D m of soil aggregate size distribution among tillage treatments, which suggested that D m could not be used as an indicator to assess short-term effects of tillage practices on soil aggregation. In the short term, >1 mm soil aggregate was a better indicator to characterize the impacts of tillage practices on quality of a Chinese Mollisol, particularly in the near-surface layer of the soil.
  • Authors:
    • Liesch, A. M.
    • Krueger, E. S.
    • Ochsner, T. E.
  • Source: Soil Science Society of America Journal
  • Volume: 75
  • Issue: 4
  • Year: 2011
  • Summary: Soils under continuous corn (Zea mays L.) silage production are oft en subjected to heavy traffic and tillage, which can degrade soil structure and physical properties. Cover crops have been shown to benefit soil structure, but the effects of double-cropping on soil structure and physical properties are unknown. Our objective was to compare the soil structure and physical properties under rye (Secale cereale L.) and corn silage double-cropping with those under continuous corn silage in Minnesota during the 2007-2008 cropping year. A conventional tillage corn silage system served as the control. Double-crop treatments were conventional tillage winter rye harvested in May or June followed by no-till corn silage. Relative to the control, the double-cropping systems exhibited superior soil structure with up to 57% better visual soil structure scores and up to 16% smaller mean weight aggregate diameter. Visual soil structure scores exhibited seasonal dynamics with significant treatment effects in November and June but not in May when the structural assessment was conducted shortly after preplant tillage in the control. The double-cropping system increased the resilience of the soil to traffic. The saturated hydraulic conductivity in wheel-tracked interrows was 375% higher in the double-cropping system relative to the control in July. Both the rye and the absence of tillage before corn planting may have contributed to this improved resilience. Heavy traffic and tillage in continuous corn silage production systems can degrade soil structure and physical properties; however, the rye-corn silage double-cropping system provided a measure of protection.
  • Authors:
    • Yang, X.
    • Li, C.
    • Liu, L.
    • Liu, Z.
  • Source: Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery
  • Volume: 42
  • Issue: 2
  • Year: 2011
  • Summary: The 2BMG-24Q pneumatic no-till wheat planter was designed. Seeds were transported into seeder pipes with high-speed air current to perform precision metering. The wavy disc coulters were used to cut stubble for sowing, and the double disc coulters were used to open furrow for fertilizing. The test results showed that the quanlification percent of seed depth and fertilizer depth were 88.3% and 85.2%, respectively.
  • Authors:
    • Liu, K.
    • Wiatrak, P.
  • Source: International Journal of Plant Production
  • Volume: 5
  • Issue: 4
  • Year: 2011
  • Summary: Nitrogen (N) application management needs to be refined for low yielding environments under dryland conditions. This 3-yr study examined nitrogen fertilization management effects on corn ( Zea mays L.) plant characteristics and grain yield in rain fed environment under conventional tillage system. Nitrogen fertilization management consisted of two timing methods of N application [all N at planting and as split with 35 kg N ha -1 applied at planting and remaining N applied at vegetative (V) 6 growth stage] and five N rates (0, 45, 90, 135, and 180 kg N ha -1). Insufficient rainfall at reproductive stage in 2008 and 2009 likely resulted in significant reduction of grain yield compared with grain yield in 2007, average 2.9 vs. 5.9 Mg ha -1. Grain yield increased with N application up to 45 kg ha -1; however, no further increase in N application resulted in increased yields. Plant height, ear height, relative chlorophyll (SPAD) content, and normalized difference vegetation index (NDVI) at reproductive (R 1) stage increased with increasing N rate up to 90, 90, 135, and 90 kg N ha -1, respectively. Corn grain yield significantly correlated with plant height at R 1, SPAD at V 8, NDVI and LAI at V 8 and R 1 stage. The combination of plant height, NDVI, and LAI of R 1 stage explained most of the variability of grain yield (r-square=0.71). The fertilization timing had no effect on corn grain yield and plant characteristics. These observations showed that applying more than 45 kg N ha -1 to corn under dryland conditions with insufficient rainfall, especially during corn pollination, may not significantly increase grain yields.
  • Authors:
    • Liu, K. S.
    • Wiatrak, P.
  • Source: American Journal of Agricultural and Biological Sciences
  • Volume: 6
  • Issue: 1
  • Year: 2011
  • Summary: Problem statement: Nitrogen application timing and Nitrogen (N) rate are two important factors to influence corn production in No-Tillage (NT) system, but N recommendations may need to be revised due to insufficient rainfall in dryland rain-fed environment. Approach: This study was to determine the effects of two N application timing (planting and split application at planting and V6 corn growth stage) and five N rates (0, 45, 90, 135 and 180 kg N ha -1) on corn plant characteristics and grain yield under rain-fed and low corn yield environment. Plant characteristics included the measurement of plant height, ear height, relative chlorophyll content (SPAD) and normalized Difference Vegetation Index (NDVI). Results: Plant height and ear height at R1 stage, SPAD at R1 and NDVI at V8 and R1 increased significantly with increasing N rates, while N application timing had no effect on measured canopy characteristics. Grain yield increased from 2.2-3.8 Mg ha -1 as N rate changed from 0-180 kg ha -1. However, applying more than 90 kg N ha -1 did not significantly increase grain yields. The N application timing did not influence yield. Strong correlations were observed among corn plant characteristics and between plant NDVI at V8 and R1 stages and grain yields. Conclusion: These results indicate that N application timing was not important factor to affect corn plant characteristics and grain yield under rain-fed and low corn yield dryland conditions and we may not expect a significant grain yield increase with application exceeding 90 kg N ha -1 under these conditions. Plant NDVI at V8 and R1 stage could be a good indicator to predict corn grain yield.
  • Authors:
    • Rengel, Z.
    • Ma, Q.
    • Siddique, K. H. M.
  • Source: Crop & Pasture Science
  • Volume: 62
  • Issue: 6
  • Year: 2011
  • Summary: Heterogeneity of soil nutrients, particularly phosphorus (P), is widespread in modern agriculture due to increased adoption of no-till farming, but P-use efficiency and related physiological processes in plants grown in soils with variable distribution of nutrients are not well documented. In a glasshouse column experiment, wheat ( Triticum aestivum L.) and white lupin ( Lupinus albus L.) were subjected to 50 mg P/kg at 7-10 cm depth (hotspot P) or 5 mg P/kg in the whole profile (uniform P), with both treatments receiving the same amount of P. Measurements were made of plant growth, gas exchange, P uptake, and root distribution. Plants with hotspot P supply had more biomass and P content than those with uniform P supply. The ratios of hotspot to uniform P supply for shoot parameters, but not for root parameters, were lower in L. albus than wheat, indicating that L. albus was better able than wheat to acquire and utilise P from low-P soil. Cluster roots in L. albus were enhanced by low shoot P concentration but suppressed by high shoot P concentration. Soil P supply decreased root thickness and the root-to-shoot ratio in wheat but had little effect on L. albus. The formation of cluster roots in low-P soil and greater proliferation and surface area of roots in the localised, P-enriched zone in L. albus than in wheat would increase plant P use in heterogeneous soils. L. albus also used proportionally less assimilated carbon than wheat for root growth in response to soil P deficiency. The comparative advantage of each strategy by wheat and L. albus for P-use efficiency under heterogeneous P supply may depend on the levels of P in the enriched v. low-P portions of the root-zone and other soil constraints such as water, nitrogen, or potassium supply.
  • Authors:
    • Machado, S.
  • Source: Agronomy Journal
  • Volume: 103
  • Issue: 1
  • Year: 2011
  • Summary: Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long-term experimentation. Fortunately, Pendleton long-term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat ( Triticum aestivum L.)-summer fallow (WW-SF) systems with annual rotation of WW and spring pea ( Pisum sativum L.). The WW-SF consisted of crop residue (CR-LTE) (0-90 N ha -1 yr -1, 11.2 Mg ha -1 yr -1 of steer ( Bos taurus) manure and 1.1 Mg ha -1 yr -1) of pea vines additions, residue burning, and tillage fertility (TF-LTE) (tillage-plow, disc, sweep, and N (0-180 kg ha -1)). Winter wheat-pea (WP-LTE) rotation treatments included maxi-till (MT-disc/chisel), fall plow (FP), spring plow (SP), and no-till (NT). Soils were sampled (0-60-cm depth) at 10-yr intervals, and grain yield and residue data collected every year. In WW-SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha -1 yr -1 in other treatments. In WP-LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha -1 yr -1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR-LTE, TF-LTE, and WP-LTE was 7.8, 5.8, and 5.2 Mg ha -1 yr -1, respectively. Winter wheat-SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.
  • Authors:
    • Pozo, A. del
    • Martinez G.,I.
    • Prat, C.
    • Uribe, H.
    • Valderrama V., N.
    • Zagal, E.
    • Sandoval, M.
    • Fernandez, F.
    • Ovalle, C.
  • Source: Chilean Journal of Agricultural Research
  • Volume: 71
  • Issue: 4
  • Year: 2011
  • Summary: Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat ( Avena sativa L. cv. Supernova-INIA) - wheat ( Triticum aestivum L. cv. Pandora-INIA) crop rotation was established under the following conservation systems: no tillage (Nt), Nt+contour plowing (Nt+Cp), Nt+barrier hedge (Nt+Bh), and Nt+subsoiling (Nt+Sb), compared to conventional tillage (Ct) to evaluate their influence on soil water content (SWC) in the profile (10 to 110 cm depth), the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p<0.05) interaction with tillage system and depth; Nt+Sb showed lower SWC between 10 to 30 cm, but higher and similar to the rest between 50 to 110 cm except for Ct. Although, SWC was higher in conservation tillage systems, the high values on soil compaction affected yield. No tillage+subsoiling reduced soil compaction and had a significant increment of grain yield (similar to Ct in seasons 2008 and 2009). These findings show us that the choice of conservation tillage in compacted soils of the Mediterranean region needs to improve soil structure to obtain higher yields and increment SWC.