• Authors:
    • Schoenau, J.
    • Mohr, R.
    • McLaren, D.
    • Irvine, R.
    • Derksen, D.
    • Monreal, M.
    • Grant, C.
  • Source: Better Crops with Plant Food
  • Volume: 88
  • Issue: 2
  • Year: 2004
  • Summary: Field experiments were conducted at the Research Centre and the Zero-Till Farm, Manitoba, Canada, during 1999-2000, 2000-01 and 2001-01, wherein rape and spring wheat were sown using conventional tillage (CT) and no-till (NT) in the first year of study. The crops were supplemented with 0, 22 or 44 lb P 2O 5/acre, side-banded at sowing. After rape and spring wheat harvest, the stubble in the CT plots was tilled. In the second year, flax was sown into both stubbled and tilled plots, and supplemented with P fertilizer side-banded at 0 or 44 lb P 2O 5/acre. The roots were evaluated for mycorrhizal association at 5 weeks of growth and seed yield was collected at crop maturity. The P nutrition of flax was most influenced by the preceding crop in rotation, while tillage system and P fertilizer management had minor impact on flax. Comparative data on the effect of P fertilizer application to current year flax, previous crop type and P fertilizer management, and tillage system on mycorrhiza incidence and flax seed yield are tabulated.
  • Authors:
    • Kreye, H.
  • Source: Bulletin OILB/SROP
  • Volume: 27
  • Issue: 10
  • Year: 2004
  • Summary: In a long-term field trial, the effects of three different tillage systems on harmful organisms and yield were investigated. The focus was on fungal diseases, weeds and slugs. With the ploughing system as the standard, a non-inversion/conservation tillage and a direct drilling/no till system were compared with one another. The crop rotation oilseed rape-wheat-barley, which was established in 1995, was reconverted into a crop rotation oilseed rape-wheat-wheat in 1998 due to problems with volunteer wheat in the following barley in the two ploughless tillage systems. The occurrence of Phoma root-collar and stem disease, the most important in Germany, was not affected in comparison over the years by the intensity of the cultivation. For Sclerotinia stem rot, a correlation could only be determined with the tillage systems in one year of the trial series. The infection became more severe with decreasing intensity of soil cultivation. Whether this result can be reproduced in future growing seasons remains to be seen. Effects on the incidence of Verticillium longisporum could not be determined. Other diseases arose only sporadically at very low levels. However, in comparison, the occurrence of weeds was affected significantly. The amount of grass weed species ( Alopecurus myosuroides, Apera spica-venti, volunteer barley) increased in the systems without ploughing. The effect on dicotyledonous weed species was dependent on the particular species. In individual years, heavy slug damage could be correlated with direct drilling system.
  • Authors:
    • Merrill, S.
    • Lares, M.
    • Tanaka, D.
    • Krupinsky, J.
  • Source: Agronomy Journal
  • Volume: 96
  • Issue: 1
  • Year: 2004
  • Summary: Crop diversification and crop sequencing can influence plant disease risk in cropping systems. The objective of this research was to determine the effect of 10 previous crops on leaf spot diseases of barley ( Hordeum vulgare L.) and hard red spring wheat ( Triticum aestivum L.). Barley and spring wheat were direct-seeded (no till) in the crop residue of 10 crops {barley, canola ( Brassica napus L.), crambe ( Crambe abyssinica Hochst. ex R.E. Fr.), dry bean ( Phaseolus vulgaris L.), dry pea ( Pisum sativum L.), flax ( Linum usitatissimum L.), safflower ( Carthamus tinctorius L.), soybean [ Glycine max (L.) Merr.], sunflower ( Helianthus annuus L.), and spring wheat}. Barley was evaluated for leaf spot diseases 15 times over 2 yr. Results indicate that risk for leaf spot disease on barley would be lower following wheat, crambe, canola and dry pea compared with the barley-after-barley treatment. Although barley yields were similar across all treatments one year, differences were detected in another year with the barley-after-barley treatment having the lowest yield. Spring wheat was evaluated for leaf spot diseases 22 times over 2 yr. Differences among treatments were more detectable in earlier evaluations, indicating a greater influence of crop residue and carryover of inoculum early in the season compared with later. The risk for leaf spot disease was lower when wheat was grown after canola, barley, crambe, and flax than when grown after the other crops. Although wheat yields were similar across all treatments one year, differences were detected in another year with the wheat-after-wheat treatment having the lowest yield.
  • Authors:
    • Richardson, J.
    • Hons, F.
    • Ribera, L.
  • Source: Agronomy Journal
  • Volume: 96
  • Issue: 2
  • Year: 2004
  • Summary: Tillage systems that reduce the number of cultivation steps can, according to soil scientists, save soil moisture, fuel, labour, and machinery costs, as well as reduce wind and water erosion. However, many producers in south Texas, USA, are reluctant to adopt these practices. The objective of this study was to compare the economics of conventional tillage (CT) and no-tillage (NT) systems on three commercial crops produced in south Texas: grain sorghum ( Sorghum bicolor), wheat ( Triticum aestivum), and soyabean ( Glycine max). When considering the economics of both tillage systems, three areas affecting profit were addressed: changes in cost per hectare, changes in yield per hectare, and the impact on net income risk. Empirical distributions of net income for different tillage systems under risk were estimated using a Monte Carlo simulation model of net income per hectare. Certainty equivalents were used to rank the tillage systems because they can be used to rank risky alternatives for risk-averse decision makers. The risk premium for risk-averse decision makers who prefer NT over CT ranges between $12.60 and $34.25 per hectare for all five crop rotations. Risk-neutral decision makers would prefer continuous sorghum and sorghum-wheat-soyabean rotation over all other rotations under CT and NT, respectively. However, risk-averse decision makers would prefer continuous sorghum over all other rotations either under CT or NT. The results suggest that under risk-neutral rankings, NT would be preferred over CT in three out of the five crop rotations tested. However, assuming a risk-averse decision maker, NT would be preferred over CT in all five crop rotations.
  • Authors:
    • Carmo, C.
    • Lhamby, J.
    • Ambrosi, I.
    • Santos, H.
  • Source: Ciencia Rural
  • Volume: 34
  • Issue: 1
  • Year: 2004
  • Summary: Soil tillage and crop rotation and succession systems were assessed in Passo Fundo, Rio Grande do Sul, Brazil, from 1994/95 to 1997/98. Four soil tillage systems, i.e. no-tillage, minimum tillage, conventional tillage using a disc plough, and conventional tillage using a mouldboard plough, and three crop rotation and succession systems, i.e. system I (wheat/soyabean), system II (wheat/soyabean and common vetch [ Vicia sativa]/sorghum or maize) and system III (wheat/soyabean, common vetch/sorghum or maize, and white oats/soyabean), were compared. An experimental design of randomized blocks with split-plots and three replications was used. The main plot was formed by the soil tillage systems, while the split-plots consisted of the crop rotation and succession systems. Two types of analysis were applied to the net return of soil tillage and crop rotation and succession systems: mean-variance and risk analysis. By the mean-variance analysis, no-tillage and minimum tillage, which presented higher net returns, were the best alternatives to be offered to the farmer. By the stochastic dominance analysis, no-tillage and crop rotation with two winters without wheat showed the highest profit and the lowest risk.
  • Authors:
    • Correa, R.
    • Wilkins, D.
    • Siemens, M.
  • Source: Transactions of the ASAE
  • Volume: 47
  • Issue: 2
  • Year: 2004
  • Summary: Adoption of conservation tillage in the Pacific Northwest lags that of the U.S. in part due to the lack of reliable seeding equipment for planting into the high residue densities encountered in this region. To overcome this problem, a drill attachment was developed to manage heavy residue next to the furrow opening tines of hoe-type no-till drills. The U.S. patented device consists of a fingered rubber wheel, a rubber inner ring, and a spring-loaded arm that pivots about vertical and horizontal axes. The performance of the device was evaluated in terms of stand establishment and yield in Oregon and Washington. Test site locations varied significantly in the amount and condition of crop residue and were planted to a variety of different crops. As compared to the standard no-till drill without the attachment, use of the residue management wheel was found to increase the stand establishment of small seeded crops such as canola and mustard by over 40% and large seeded crops such as wheat and barley by approximately 17%. Increases in stand establishment were attributed to fewer piles of residue covering the seed row. Use of the device also significantly increased crop yield by up to 12% in 8 of the 20 trials conducted (P≤0.10). Although the residue management wheel costs $300 per unit to fabricate, using the device may be economically feasible if it results in significant improvements in both stand establishment and yield.
  • Authors:
    • Rice, C. W.
    • Kocylgit, R.
  • Source: Turkish Journal of Agriculture & Forestry
  • Volume: 28
  • Issue: 3
  • Year: 2004
  • Summary: Soil carbon (C) dynamics is an important aspect of the global C cycle. Soils can be a sink or source for atmospheric CO2 depending upon management. Tallgrass prairie and wheat (Triticum aestivum L.) are 2 dominant ecosystems in the Great Plains. This study determined the distribution of C in these 2 ecosystems. Soil C pools, plant root biomass, and aboveground plant biomass were determined at a wheat (winter wheat) and a tallgrass prairie site in northern Oklahoma from 1998 through 2001. The objectives of this study were to determine C storage and changes in soil organic matter in tallgrass prairie and wheat ecosystems under similar environmental conditions and soil characteristics. Soil C was assessed by measuring soil C pools (active, slow and recalcitrant). Mineralizable C and N (Co and No) were determined by long-term laboratory incubation, 314 days at 35 degreeC. Soil C and N content was 2 times greater in the prairie than under wheat. The greater level of Co and No occurred in prairie. Wheat had proportionally greater mineralizable C and N than did prairie, but microbial biomass was the opposite, being greater in prairie. Wheat had more dynamic C pools with a faster turnover rate than did prairie. The more dynamic C pools with a faster turnover rate in wheat was the result of the greater disturbance effects of intensive tillage practices on soil structure.
  • Authors:
    • Rice, C. W.
    • Claassen, M. M.
    • Nelson, R. G.
    • Williams, J. R.
  • Source: Environmental Management
  • Volume: 33
  • Issue: 1
  • Year: 2004
  • Summary: An economic analysis of wheat and grain sorghum production systems that affect carbon dioxide (CO2) emissions and sequester soil carbon (C) in metric tons (MT) is conducted. Expected net returns, changes in net C sequestered, and the value of C credits necessary to equate net returns from systems that sequester more C with those that sequester less is determined with and without adjustments for CO2 emissions from production inputs. Experiment station cropping practices, yield data, and soil C data for continuously cropped and rotated wheat and grain sorghum produced with conventional tillage and no-tillage are used. No-till has lower net returns because of somewhat lower yields and higher overall costs. Both crops produced under no-till have higher annual soil C gains than under conventional tillage. However, no-till systems have somewhat higher total atmospheric emissions of C from production inputs. The C credit values estimated in this study will equate net returns of no-tillage to conventional tillage range from $8.62 to $64.65/MT/yr when C emissions from production inputs are subtracted from soil C sequestered, and $8.59 to $60.54/MT/yr when atmospheric emissions are not considered. This indicates accounting for CO2 emissions from production inputs may not be necessary in the process to issue C credits.
  • Authors:
    • Stachecki, S.
    • Jakubiak, S.
  • Source: Plant Toxicology
  • Volume: 25
  • Issue: 1
  • Year: 2004
  • Summary: The residual effects of clomazone, metazachlor and their mixtures on re-sown crops were studied in field experiments carried out during 1997-2000 on leached brown soil in Poland. Two-factor experiments were established in 4 replications for the following crops. The treatments consisted of herbicides and the method of pre-sowing soil tillage (pre-sowing ploughing or reduced soil tillage). In autumn, after sowing of winter oilseed rape, Command 480 EC (clomazone) was applied to soil at 0.2 litre/ha (96 g a.i./ha) alone and as a mixture with Butisan 400 SC (metazachlor) at 2.5 litre/ha (1000 g a.i./ha). Butisan 400 SC was applied twice at 1.5 litre/ha (600 g a.i./ha) at the cotyledon stage of weeds. The following crops were re-sown in spring: spring barley, spring wheat, oat, pea and sugarbeet. The frosty winter enhanced the residual effects of the herbicides on the re-sown crops, injuries were much more visible, and the yields of the re-sown crops were decreased. Generally, reduced tillage presown harrowing with disc harrowing did not affect the phytotoxicity of the herbicides. Oat was as susceptible to the herbicides as the other spring cereals.
  • Authors:
    • Andren, O.
    • Katterer, T.
    • Persson, J.
  • Source: Nutrient Cycling in Agroecosystems
  • Volume: 70
  • Issue: 2
  • Year: 2004
  • Summary: Land use in general and particularly agricultural practices can significantly influence soil carbon storage. In this paper, we investigate the long-term effects of management changes on soil carbon stock dynamics on a Swedish farm where C concentrations were measured in 1956 at 124 points in a regular grid. The soil was re-sampled at 65 points in 1984 and at all grid points in 2001. Before 1956 most of the fodder for dairy cattle was produced on the farm and crop rotations were dominated by perennial grass leys and spring cereals with manure addition. In 1956 all animals were sold; crop rotations were thereafter dominated by wheat, barley and rapeseed. Spatial variation in topsoil C concentration decreased significantly between 1956 and 2001. C stocks declined in fields with initially large C stocks but did not change significantly in fields with moderate C stocks. In the latter fields, soil C concentrations declined from 1956 to 1984, but increased slightly thereafter according to both measurements and simulations. Thus, the decline in C input due to the altered management in 1956 was partly compensated for by increasing crop yields and management changes, resulting in increased C input during the last 20 years. A soil carbon balance model (ICBM) was used to describe carbon dynamics during 45 years. Yield records were transformed to soil carbon input using allometric functions. Topsoil C concentrations ranging between 1.8 and 2.4% (depending on individual field properties) seemed to be in dynamic equilibrium with C input under recent farming and climatic conditions. Subsoil C concentrations seemed to be unaffected by the management changes.