• Authors:
    • Soomro, B. A.
    • Markhand, G. S.
    • Soomro, M. H.
  • Source: Pakistan Journal of Botany
  • Volume: 44
  • Issue: 1
  • Year: 2012
  • Summary: The drought is one of the biggest abiotic stresses for crop production in arid and semi-arid agriculture. Thus it is a challenge for plant scientists to screen and develop the drought tolerant cotton lines. In this study, 31 cotton genotypes/cultivars were evaluated under two irrigation regimes i.e., seven irrigations (Control) and two irrigations (Stress), using split plot design with four replications. The crop growth, yield and some physiological parameters were studied. There were high inter-varietal differences for all the parameters under control as well as drought stress. Although all the varieties for all parameters were significantly affected by drought but however, CRIS-9, MARVI, CRIS-134, CRIS-126, CRIS-337, CRIS-355 and CRIS-377 maintained highest performance for all the parameters studied under high drought conditions.
  • Authors:
    • Jarsjo, J.
    • Tornqvist, R.
  • Source: Water Resources Management
  • Volume: 26
  • Issue: 4
  • Year: 2012
  • Summary: In many semi-arid and arid regions of the world, water saving strategies need to be implemented in the agricultural sector in order to increase the resilience to water scarcity. We investigate basin-scale hydrological impacts of possible irrigation technique improvements, considering extensive cotton fields in the Aral Sea drainage basin (ASDB), Central Asia. We use a distributed hydrologic model that combines basin-scale, calibrated discharge and evapotranspiration quantifications with experimental results of (on-farm) water application needs for different irrigation techniques. This allows for quantification of how return flows contribute to river discharge through coupled groundwater-surface water-systems at the basin scale, under different regional climatic conditions. Results show that an implementation of improved irrigation techniques can yield water savings that increase the discharge to the Aral Sea by between 1 and 6 km(3)/year. Such water savings could contribute to mitigation of the acute water scarcity in the lower ASDB. The basin-scale water savings are about 60% lower than corresponding on-farm reductions in irrigation water application, since water is re-used and, hence, return flows decrease when less water is applied. Spatial analysis of regional differences in climatic conditions shows that implementation of more efficient irrigation systems would result in much larger (up to a factor 4) water savings in the more arid downstream regions than in the colder, upstream mountainous regions.
  • Authors:
    • Liu, S.
    • Jiang, S.
    • Liu, S.
    • Hu, W.
    • Wan, S.
    • Kang, Y.
    • Wang, R.
  • Source: Agricultural Water Management
  • Volume: 110
  • Year: 2012
  • Summary: In order to evaluate the effects of different amounts of water, applied by drip irrigation, to a saline-sodic soil (surface ECe > 40 dS/m; SAR > 40), on cotton growth and soil salinity, a three-year experiment was conducted on a saline wasteland in Xinjiang Northwest China during 2008-2010. Five water treatments were used for this experiment based on the soil-water matric potential (SMP) measured 20 cm beneath a drip emitter located close to the plant: the SMP levels used to determine when to irrigate were -5 kPa (S1), -10 kPa (S2). -15 kPa (S3), -20 kPa (S4), and -25 kPa (S5). After three years, both the soil salinity (ECe) and sodicity (SAR) declined significantly in 0-120 cm depth and more reduction were achieved in 0-40 cm soil depth than in 40-80 and 80-120 cm depths. Moreover, the reductions of SAR were smaller than those of ECe. Additionally, the amount of salt removed from the 0 to 80 cm depth decreased with decreasing SMP threshold. The S1 treatment resulted in the highest lint yields in 2009 and 2010. Considering the effects of leached salts on the environment of deep soil layer and the yield of cotton, an SMP of -10 kPa can be used to trigger irrigation for cotton in the first three years for saline wasteland reclamation in Xinjiang Northwest China. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
  • Authors:
    • Wang, J.
    • Wang, X. J.
    • Ma, T. F.
    • Wei, C. .Z.
  • Source: Journal of Arid Land
  • Volume: 4
  • Issue: 3
  • Year: 2012
  • Summary: Quantitative information on the fate and efficiency of nitrogen (N) fertilizer applied to coarse textured calcareous soils in arid farming systems is scarce but, as systems intensify, is essential to support sustainable agronomic management decisions. A mesh house study was undertaken to trace the fate of N fertilizer applied to cotton (Gossypium hirsutum L. cv., Huiyuan701) growing on a reconstructed profile (0-100 cm) of a calcareous (>15% CaCO3) sandy loam soil. Two irrigation methods (drip irrigation, DI; and furrow irrigation, Fl) and four N application rates (0, 240, 360 and 480 kg/hm(2), abbreviated as N-0, N-240, N-360, and N-480, respectively) were applied. N-15-labelled urea fertilizer was applied in a split application. DI enhanced the biomass of whole plant and all parts of the plant, except for root; more fertilizer N was taken up and mostly stored in vegetative parts; N utilization efficiency (NUE) was significantly greater than in Fl. N utilization efficiency (NUE) decreased from 52.59% in N-240 to 36.44% in N-480. N residue in soil and plant N uptake increased with increased N dosage, but recovery rate decreased consistently both in DI and Fl. Plant N uptake and soil N residue were greater in DI than in FI. N residue mainly stayed within 0-40 cm depth in DI but within 40-80 cm depth in Fl. Fl showed 17.89% of N leached out, but no N leaching occurred in DI. N recovery rate in the soil-plant system was 75.82% in DI, which was markedly greater than the 55.97% in Fl. DI exhibited greater NUE, greater residual N in the soil profile and therefore greater N recovery rate than in Fl; also, N distribution in soil profile shallowed in DI, resulting in a reduced risk of N leaching compared to Fl; and enhanced shoot growth and reduced root growth in DI is beneficial for more economic yield formation. Compared to furrow irrigation, drip irrigation is an irrigation method where N movement favors the prevention of N from being lost in the plant-soil system and benefits a more efficient use of N.
  • Authors:
    • He, S. R.
    • Pan, Y.
    • Jiao, X. Y.
    • Wu, Q. M.
  • Source: Transactions of the Chinese Society of Agricultural Engineering
  • Volume: 28
  • Issue: 1
  • Year: 2012
  • Summary: The intelligent micro-irrigation system based on internet of things technology, an efficient way to agriculture sustainable development in arid area, can realize precision irrigation. With internet of things technique and according to the exact demands of irrigation decision-making and management, the cotton intelligent micro-irrigation system was designed and implemented. This system was applied in the cotton demonstration zone with the technology of drip irrigation under plastic film in Kuala, Xinjiang. The results indicated that the system can solve the difficulties of the layout of soil moisture monitoring points, high price of key hardware products. The intelligent micro-irrigation system cost reduced by 44.8% compared to the foreign similar products, and the system increased WUE by 22.6% compared to the traditional irrigation method.
  • Authors:
    • Zhang, W. F.
    • Zhang, Y. L.
    • Luo, H. H.
    • Wang, J.
    • Yang, L.
    • Zhang, Q. B.
  • Source: China Agriculture Science
  • Volume: 45
  • Issue: 12
  • Year: 2012
  • Summary: Objective: It is of great significance to explore the effects of different irrigation methods and fertilization measures on soil carbon balance in cotton field during cotton growth season in arid region, and to compare the effects of different management practices on soil carbon sequestration intensity in cotton field. Method: Two-factor experiments with two irrigation methods and four fertilizer treatments were conducted during cotton growth period. Drip irrigation and flood irrigation were arranged as two different irrigation methods and organic manure (OM), N P K fertilizer (NPK), combined application of NPK fertilizer and organic manure (NPK+OM) and no fertilization (CK) were arranged as four fertilizer treatments. Soil respiration rate in cotton field was measured by LI-8100 automated soil CO 2 efflux system and root contribution of soil respiration was detected by root exclusion method. Soil carbon sequestration intensity in cotton field under different irrigation methods and fertilization measures was analyzed by calculating net ecosystem productivity (NEP). Result: Under the conditions of different irrigation methods and fertilization measures, seasonal variation of cropland soil respiration rate showed an increase at first, then followed a declining trend with air temperature change. Soil respiration rate reached a peak in mid-July and then reduced to the minimum in mid-October after cotton harvest. Soil carbon emission under drip irrigation was larger than that under flood irrigation, and under the same irrigation condition, the soil carbon emission with NPK+OM treatment was the highest, then with OM, CK, NPK in turn. The ratio of root respiration contribution to soil respiration was fluctuated between 36.38% and 58.74% under drip irrigation method, whereas between 33.73% and 52.03% under flood irrigation method. Root respiration contribution was the highest at the boiling stage. During the whole growth period, the root respiration contribution under drip irrigation and flood irrigation was averagely 48.05% and 44.31%, respectively. The order of net primary productivity (NPP) of cropland was NPK+OM > NPK > OM > CK under different irrigation methods in the whole season. Cotton field was carbon sink under different management practices in the whole season, and the intensity of carbon sink under drip irrigation was stronger than that under flood irrigation. Under the same irrigation condition, the order of the intensity of carbon sink was NPK+OM > NPK > OM > CK. Under the condition of interaction between irrigation method and fertilization measure, the carbon sink intensity was the strongest under drip irrigation method and NPK+OM. Conclusion: In arid region, cotton production using cropland management measures, such as water saving technology of drip irrigation under mulch, combined application of NPK fertilizer and organic manure and straw returning, could not only increase soil organic carbon content, fertilize the soil fertility and improve cotton yield, but also promote to fix carbon and reduce discharge.
  • Authors:
    • Bakshawain, A. A.
    • Abusuwar, A. O.
  • Source: African Journal of Microbiology Research
  • Volume: 6
  • Issue: 14
  • Year: 2012
  • Summary: A field experiment was carried out during 2009/2010 and 2010/2011 seasons at Hada Al-Sham experimental Farm of King A/Aziz University in Jeddah, Saudi Arabia. The objective was to evaluate the effect of some chemical fertilizers on productivity and nutritive value of Sorghum Sudanense Var. Panar intercropped with Cowpea ( Vigna unguiculata L. Walp) in an adverse condition of soil and irrigation water. The chemical fertilizers applied were 50 kg/ha of urea (46%N), 50 kg/ha of triple superphosphate (46% P), 50 kg/ha of KNO 3, 50 kg/ha of NPK (20:20:40) and a control for check. Sudan grass and Cowpea were sown as sole crops and as a mixture. Treatments were laid out in a split plot design with the fertilizer treatments in the main plots and the intercropping treatments in the subplots. Parameters measured were plant height and nutritive value for the Sudan grass, fresh and dry yields and the land equivalent ratio (LER). The chemical fertilizers had no significant (P≤0.05) effect on productivity but significantly improved forage quality. Intercropping of Sudan grass and Cowpea significantly (P≤0.05) increased forage productivity and improved forage quality and land equivalent ratio (LER). Cowpea was not a good competitor as it disappeared following the first cut in the first season.
  • Authors:
    • [Anonymous]
  • Source: Soils Newsletter
  • Volume: 34
  • Issue: 1
  • Year: 2011
  • Summary: Through an IAEA technical cooperation project, the Turkish Atomic Energy Agency, in cooperation with the Nigde Potato Research Institute and the Soil and Fertilizer Research Institute, an innovative drip fertigation technology was implemented to improve water and nitrogen fertilizer use efficiency in potato production in the Nigde-Nevsehir Region. This technology reduced the amount of irrigation water needed by 50% and nitrogen fertilizer use by 40%, from 1000 to 600 kg N/ha. Drip fertigation technology increased water and nitrogen use efficiency by applying water and nitrogen directly to the immediate vicinity of the plant roots through a network of pipes and water emitters. Considering the magnitude and importance of potato production in the arid and semiarid areas of Turkey, the 50% reduction in crop water requirements through drip fertigation has a major impact on agricultural production and water management strategies in these areas. It was calculated that a transition from sprinkler irrigation to drip fertigation requires an initial investment cost of up to US $200/ha, depending on the sophistication of the drip fertigation system. This investment can be balanced against projected savings in time, energy, fertilizer and labour costs amounting to an estimated US $2000/ha/year. As a consequence, interest in drip fertigation has been remarkable among potato farmers in the region, so that in only three years the area under drip fertigation has increased from humble beginnings of 500 ha in 2005 to 4000 ha in 2007 and to nearly 7000 ha in 2010.
  • Authors:
    • Sanjani, S.
    • Bannayan, M.
  • Source: Agricultural and Forest Meteorology
  • Volume: 151
  • Issue: 12
  • Year: 2011
  • Summary: Climate variability and weather extremes are principal sources of fluctuations of annual productivity of many crops in arid and semi-arid environments. Temperature and precipitation are the major weather variables that determine the variability of crop yields. In this study, the relationship between weather descriptors and major irrigated crops yield were assessed for Khorasan province in northeast of Iran. Long term daily weather (1984-2007) and crop yield (wheat, barley, sugarbeet, cotton, potato, chickpea, alfalfa) data were analyzed with simple correlation analysis and also the iterative chi-square analysis identified relationships of low and high wheat yield years to maximum and minimum air temperatures within each region. Our results indicated that association between various crop yield and descriptors varied in different study location. As in Bojnourd located in the north of Khorasan yields of the crops studied did not correlate with temperature indicators, whereas in Birjand the relationship between temperature descriptors and crop yields were strong. Correlation between growing season precipitation and wheat, barley, chickpea and sugarbeet yields was positive while cotton yield decreased with increasing precipitation during the growing season. The results of chi-square analysis for wheat yield demonstrated that the critical time in which extreme temperature led to yield loss differed among regions. In Bojnourd, in late April to early May, and excess days (high or low yield years have more days meeting a cardinal value than normal years) with maximum temperature higher than 30 degrees C, wheat yield decreased while in Birjand, cooler maximum temperature (
  • Authors:
    • Efent'ev, A. N.
    • Grigorov, M. S.
  • Issue: 4
  • Year: 2011
  • Summary: Maize cultivation has a great potential in Russia with the current area under crop of 2.5 million ha and the prospective grain yield of 2.38 t/ha by 2015. The main reason for unstable yield of maize grain in Russia is water shortage in arid climate conditions of steppe zone. An author gives an overview of maize cultivation techniques in arid areas including fertilization, different irrigation methods, irrigation norms and regimes, irrigation machinery, as well as maize cultivars suitable for dry climate conditions. Effects of irrigation rate and fertilization on productivity of maize hybrid Povolzhskii 20 SV were studied in the production enterprise "Lider" of the Volgograd region in 2010. The maximal grain yield of 6.65 t/ha was achieved by applying irrigation rate of 3600 m 3/ha and 220:100:60 kg of NPK/ha.