• Authors:
    • Hulugalle, N. R.
  • Source: Communications in Soil Science and Plant Analysis
  • Volume: 31
  • Issue: 5-6
  • Year: 2000
  • Authors:
    • Samu, F.
    • Sunderland, K.
  • Source: Entomologia Experimentalis Et Applicata
  • Volume: 95
  • Issue: 1
  • Year: 2000
  • Summary: A review of the literature showed that spider abundance was increased by diversification in 63% of studies. A comparison of diversification modes showed that spider abundance in the crop was increased in 33% of studies by `aggregated diversification' (e.g. intercropping and non-crop strips) and in 80% of studies by `interspersed diversification' (e.g., undersowing, partial weediness, mulching and reduced tillage). It is suggested that spiders tend to remain in diversified patches and that extending the diversification throughout the whole crop (as in interspersed diversification) offers the best prospects for improving pest control. There is little evidence that spiders walk in significant numbers into fields from uncultivated field edges, but diversification at the landscape level serves to foster large multi-species regional populations of spiders which are valuable as a source of aerial immigrants into newly planted crops. There are very few manipulative field studies where the impact of spiders on pests has been measured in diversified crops compared with undiversified controls. It is encouraging, however, that in those few studies an increased spider density resulted in improved pest control. Future work needs are identified.
  • Authors:
    • Tonkin, C. J.
    • Dellow, J. J.
    • Mullen, C. L.
  • Source: Weed control in winter crops 2000 Weed control in winter crops 2000.
  • Year: 2000
  • Summary: This guide provides information on chemical weed control in New South Wales, Australia, for the following winter crops: wheat; barley; oats; rye; triticale; canola [rape]; safflower; lentils; linseed; lupins; chickpeas; faba beans; field pea; and fallows.
  • Authors:
    • Powell, C.
  • Source: New South Wales Department of Agriculture
  • Year: 2000
  • Summary: This report presents tabulated yield data from variety trials held in New South Wales, Australia, for barley, rape, faba beans, field peas, lentils, lupins, mixed cereals (barley, oats, triticale and wheat), oats, triticale, wheat.
  • Authors:
    • Powell, C.
  • Source: New South Wales Department of Agriculture
  • Year: 2000
  • Summary: Tabulated data on yield are presented from variety trials conducted in New South Wales, Australia, during 1999 for barley, rape, chickpeas, faba beans, field peas, lentils, lupins, mixed cereal (barley, oats, rye, triticale and wheat), oats, triticale and wheat.
  • Authors:
    • Clark, K.
  • Source: Regional on-farm experiments 1999: Deniliquin, Finley, Hillston, Leeton & Beckom agronomy districts
  • Year: 2000
  • Summary: Tabulated yield data are presented from variety trials conducted throughout New South Wales, Australia, for barley, rape, lentils, lupins, oats, peas, wheat and narbon ( Vicia narbonensis).
  • Authors:
    • Olsson, K. A.
    • Cockroft, B.
  • Source: Australian Journal of Soil Research
  • Volume: 38
  • Issue: 1
  • Year: 2000
  • Summary: A study on irrigated orchards in northern Victoria, Australia, on a fine sandy loam over clayey red-brown earth showed soil hardening within 2-3 months after the initial cultivation. This common yet distinct form of soil hardening is termed coalescence. Coalescence is the slow increase in soil hardness which develops during cycles of wetting and drying. The structure of a well-prepared bed of soil that is water-stable and not trafficked changes to one that is hard, although perforated with biopores. These pores facilitate the infiltration of water, drainage, and some growth of roots, but the hard matrix causes root growth and activity to be substantially reduced compared with roots in loose soil and this reduces the productivity of the crop. Coalescence is an important cause of poor responses in productivity to zero and minimum tillage systems of soil management. Isolated examples of soils in the field that remain soft, loose, and porous, after more than 2 years since cultivation were found. This suggests that it might be possible to prevent coalescence. These coalescence-stable soils, in common with virgin soils, have properties that enable them to resist coalescing. High organic matter (>4% w/w total C content) is closely related to zero coalescence.
  • Authors:
    • Vallis, I.
    • McEwan, C. W.
    • Weier, K. L.
    • Catchpoole,V. R.
    • Myers, R. J.
  • Source: Australian Journal of Agricultural Research
  • Volume: 47
  • Issue: 1
  • Year: 1996
  • Summary: Nitrogen (N) fertilizer is being lost from sugarcane soils following application to the crop. This study was conducted to estimate the quantity of N being lost from the soil through biological denitrification and to determine the proportion of gaseous N being emitted either as N2O or as N-2. Field studies were conducted on four different soils (humic gley, alluvial massive earth, red earth and gleyed podzolic), and on different crop management systems, by installing plastic (PVC) cylinders (23.5 cm diam., 25 cm long) in the soil to a depth of 20 cm beside the plant row in a ratoon sugarcane crop. N-15-labelled KNO3 was applied as a band across each cylinder to a depth of 2.5 cm at a rate of 160 kg N/ha. After rainfall or irrigation, the cylinders were capped for 3 h intervals and gas in the headspace sampled in the morning and afternoon, for up to 4 days. Denitrification losses from the humic gley ranged from 247 g N/ha . day for cultivated plots to 1673 g N/ha . day for no-till plots. Over the sampling period, this was equivalent to 3.2% and 19.7% of the N applied, respectively. Nitrous oxide accounted for 46% to 78% of the total N lost. For the alluvial, massive earth and the red earth and gleyed podzolic, losses over the sampling period ranged from 25 to 117 g N/h . day and represented less than or equal to 1% of the N applied. Recovery of N-15 in the soil ranged from 67% at the first sampling on the red earth soil to 4.9% at the third sampling on the alluvial, massive earth soil. In a glasshouse study, intact soil cores (23.5 cm diam., 20 cm long), taken from the humic gley and the alluvial, massive earth, were waterlogged after band application of N-15-labelled KNO3 at a rate of 160 kg N/ha. Gas samples from the headspace were taken after 3 h, and then morning and afternoon for the next 14 days. Denitrification losses ranged from 13.2 to 38.6% of N applied with the majority of gaseous N loss occurring as N-2. Total N-15 recoveries after 14 days, including the evolved gases, ranged from 68.7 to 88.2%. We conclude that denitrification is a major cause of fertilizer N loss from fine-textured soils, with nitrous oxide the major gaseous N product when soil nitrate concentrations are high.
  • Authors:
    • Bendotti, S.
    • Proffitt, A. P. B.
    • Riethmuller, G. P.
  • Source: Soil & Tillage Research
  • Volume: 35
  • Issue: 4
  • Year: 1995
  • Summary: The effects of past grazing management practice on subsequent seedbed condition, draft requirements, fuel consumption, crop establishment and growth, and grain yield and quality were examined using three tillage systems on two sowing dates. The crop was wheat (Triticum aestivum), sown on a fragile sandy clay loam (red duplex soil) in a dryland agricultural area (307 mm average annual rainfall) of Western Australia. The three tillage-sowing systems investigated were: (i) scarifying followed by sowing with wide (180 mm) points; (ii) direct drilling with wide (180 mm) points; (iii) direct drilling with narrow (50 mm) inverted 'T'-shaped Super-Seeder points. The two sowing dates provided differences in seedbed water content at sowing time. The three grazing management strategies practised in the previous pasture year were: (i) traditional set-stocking (where sheep were grazed continuously for 17 weeks, beginning soon after the start of the early winter rains); (ii) controlled grazing (where sheep were temporarily removed from the enclosure when the topsoil was close to its plastic limit); (iii) no grazing (where the pasture was mown to simulate grazing without trampling). Tillage prior to sowing with wide points reduced the mechanical impedance of the soil following set-stocking and provided a good seedbed for successful crop establishment and growth. In both the controlled-grazing management treatment and the treatment where the pasture had been mown the soil was suitable for direct drilling with both wide and narrow points (i.e. no pre-sowing tillage was required). The use of narrow points had the added advantage of requiring less fuel, but the need for a suitable implement to cover seeds was more critical than for wider sowing points. There were no advantages with respect to grain yield from adopting a controlled-grazing management practice owing to the lack of finishing rainfall. However, grain protein levels were higher in both the controlled and ungrazed treatments compared with the set-stocking treatment.
  • Authors:
    • Martin, R. J.
    • Marcellos, H.
    • Felton, W. L.
  • Source: Australian Journal of Experimental Agriculture
  • Volume: 35
  • Issue: 7
  • Year: 1995
  • Summary: Four experiments were commenced after a 1980 wheat crop, and a fifth after the 1981 crop, at different sites representing the major soil types of northern New South Wales in the 550-700 mm rainfall zone, to examine the influence of 3 fallow management practices [no tillage (NT); stubble retention after harvest, cultivation (SM); stubble burning after harvest, cultivation (SB)] on wheat production. Data considered in this paper cover the continuous wheat subtreatments of the 5 experiments (1981-90). Nitrogen applied at 50 kg N/ha in addition to the basal treatment was included as a treatment from 1986 to 1988. Across all sites and seasons, grain yields were in the order SB>SM approximate to NT, stubble retention having a greater effect than tillage. In some years at some sites, differences in grain yield and grain N yield were not significant. In others, when significant yield differences occurred, variations in grain yield and grain N yield were highly correlated with differences in soil N available for the crop. The data show that the influence of fallow management interacted with season and crop nutrition, and required long-term study for proper assessment.