• Authors:
    • Hagan, D.
    • Kammann, C.
    • Hepp, S.
    • Augustenborg, C. A.
    • Schmidt, O.
    • Muller, C.
  • Source: Journal of Environmental Quality
  • Volume: 41
  • Issue: 4
  • Year: 2012
  • Summary: Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO 2) and nitrous oxide (N 2O) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in N 2O emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased N 2O fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil N 2O emissions in the presence of earthworms was significantly reduced by the addition of both biochars. Miscanthus biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO 2 efflux in the absence of earthworms. However, soil CO 2 efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil N 2O and CO 2 emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.
  • Authors:
    • McDonnell, K.
    • Grant, J.
    • Finnan, J.
    • Ryan, D.
    • Fagan, C.
    • Galbally, P.
  • Source: Journal of Environmental Quality
  • Volume: 41
  • Issue: 1
  • Year: 2012
  • Summary: It is necessary to determine the risk of water pollution arising from amendment of organic by-products (OBs) to energy crops under Irish conditions. Therefore, the impact of landspreading two OBs on the quality of groundwater underlying plantations of Miscanthus * giganteus was assessed. Municipal biosolids and distillery effluent (DE) were spread annually (for 4 yr) on six 0.117-ha treatment plots at rates of 100, 50, and 0%. The 100% rate represented a maximum P load of 15 t ha -1 as per Irish EPA regulation. Groundwater was sampled for 25 mo and tested for pH, electrical conductivity, NO 3-, orthophosphate (PO 43-), total soluble P, K +, Cu, Cd, Cr, Pb, Ni, and Zn. Assessment of quality was based on comparison with Irish groundwater threshold values (GTVs). The study was limited to within-plot using a "well bottom" approach and did not investigate movement of groundwater plumes or vectors of percolation through the soil profile. Mean groundwater concentrations did not exceed GTVs during the sampling period for any species, with the exception of groundwater PO 43- in the 100% DE plot, which was almost double the GTV of 0.035 mg L -1. There was no significant build-up of nutrients or heavy metals in groundwater (or soil) for any plot. Excessive PO 43- in the 100% DE plot groundwater is likely due to high background soil P, soil characteristics, and the occurrence of macropore/soil pore flow. These factors (particularly background soil P) should be assessed when determining suitable sites for land-spreading OBs.
  • Authors:
    • Nolan, P.
    • Burke, J.
    • Roth, B.
    • Helmy, M.
    • Osborne, B.
    • Jones, M.
    • Rueangritsarakul, K.
    • Abdalla, M.
    • Smith, P.
    • Williams, M.
  • Source: Water, Air, & Soil Pollution
  • Volume: 223
  • Issue: 8
  • Year: 2012
  • Summary: Field management is expected to influence nitrous oxide (N2O) production from arable cropping systems through effects on soil physics and biology. Measurements of N2O flux were carried out on a weekly basis from April 2008 to August 2009 for a spring sown barley crop at Oak Park Research Centre, Carlow, Ireland. The soil was a free draining sandy loam typical of the majority of cereal growing land in Ireland. The aims of this study were to investigate the suitability of combining reduced tillage and a mustard cover crop (RT-CC) to mitigate nitrous oxide emissions from arable soils and to validate the DeNitrification-DeComposition (DNDC) model version (v. 9.2) for estimating N2O emissions. In addition, the model was used to simulate N2O emissions for two sets of future climate scenarios (period 2021-2060). Field results showed that although the daily emissions were significantly higher for RT-CC on two occasions (p 0.05) on the cumulative N2O flux, compared with the CT treatment, was found. DNDC was validated using N2O data collected from this study in combination with previously collected data and shown to be suitable for estimating N2O emissions (r (2) = 0.70), water-filled pore space (WFPS) (r (2) = 0.58) and soil temperature (r (2) = 0.87) from this field. The relative deviations of the simulated to the measured N2O values with the 140 kg N ha(-1) fertiliser application rate were -36 % for RT-CC and -19 % for CT. Root mean square error values were 0.014 and 0.007 kg N2O-N ha(-1) day(-1), respectively, indicating a reasonable fit. Future cumulative N2O fluxes and total denitrification were predicted to increase under the RT-CC management for all future climate projections, whilst predictions were inconsistent under the CT. Our study suggests that the use of RT-CC as an alternative farm management system for spring barley, if the sole objective is to reduce N2O emissions, may not be successful.
  • Authors:
    • Zegada-Lizarazu, W.
    • Walter, K.
    • Valentine, J.
    • Djomo, S. Njakou
    • Monti, A.
    • Mander, U.
    • Lanigan, G. J.
    • Jones, M. B.
    • Hyvonen, N.
    • Freibauer, A.
    • Flessa, H.
    • Drewer, J.
    • Carter, M. S.
    • Skiba, U.
    • Hastings, A.
    • Osborne, B.
    • Don, A.
    • Zenone, T.
  • Source: GCB Bioenergy
  • Volume: 4
  • Issue: 4
  • Year: 2012
  • Summary: Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second-generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N-use efficiency, due to effective N-recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha(-1) yr(-1) for poplar and willow and 0.66 Mg soil C ha(-1) yr(-1) for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land-use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.
  • Authors:
    • Purcell, P. J.
    • O'Brien, M.
    • Boland, T. M.
    • O'Kiely, P.
    • O'Donovan, M.
  • Source: Animal Feed Science and Technology
  • Volume: 166/167
  • Year: 2011
  • Summary: This study determined in vitro rumen CH 4 production of perennial ryegrass grown within a well managed Irish dairy production system. Four strategies, consisting of two pre-grazing herbage mass (HM; high 2400 and low 1600 kg dry matter (DM)/ha) and two sward allowance (SA; high 20 and low 15 kg DM/cow/d) treatments, were compared throughout the grazing season using an in vitro rumen gas production technique. Samples were collected during five 22 d sampling periods (SP 1-5) throughout the growing season and analysed for in vitro rumen CH 4 output, and total gas and volatile fatty acid production following 24 h of incubation with rumen fluid and artificial saliva. High HM was associated with lower organic matter digestibility and crude protein concentration compared with low HM, whereas SA had no effect on herbage composition. Methane output as ml/g DM incubated or digested was higher (P<0.05) for the high HM treatment than for the low HM treatment (25.5 versus 24.6 and 32.2 versus 30.5, respectively). Sward allowance had no effect on CH 4 output, but CH 4 output/g DM incubated or digested was affected by sampling period. Sward allowance did not alter methanogenesis and, although HM affected CH 4 output in vitro, the biological scale of this effect was small. Thus, grass management strategy had little impact on in vitro rumen CH 4 output when herbage was consistently of high nutritional quality.
  • Authors:
    • Dejoux, J. F.
    • Aubinet, M.
    • Bernhofer, C.
    • Bodson, B.
    • Buchmann, N.
    • Carrara, A.
    • Cellier, P.
    • Di Tommasi, P.
    • Elbers, J. A.
    • Eugster, W.
    • Gruenwald, T.
    • Jacobs, C. M. J.
    • Jans, W. W. P.
    • Jones, M.
    • Kutsch, W.
    • Lanigan, G.
    • Magliulo, E.
    • Marloie, O.
    • Moors, E. J.
    • Moureaux, C.
    • Olioso, A.
    • Osborne, B.
    • Sanz, M. J.
    • Saunders, M.
    • Smith, P.
    • Soegaard, H.
    • Wattenbach, M.
    • Ceschia, E.
    • Beziat, P.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 139
  • Issue: 3
  • Year: 2010
  • Summary: The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal, with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from the field (yield) to the total GHGB. On average, NEP was negative (-284 +/- 228 gC m(-2) year(-1)), and most cropping systems behaved as atmospheric sinks, with sink strength generally increasing with the number of days of active vegetation. The NECB was, on average, 138 +/- 239 gC m(-2) year(-1), corresponding to an annual loss of about 2.6 +/- 4.5% of the soil organic C content, but with high uncertainty. Management strongly influenced the NECB, with organic fertilisation tending to lower the ecosystem carbon budget. On average, emissions caused by fertilisers (manufacturing, packaging, transport, storage and associated N2O emissions) represented close to 76% of EFO. The operation of machinery (use and maintenance) and the use of pesticides represented 9.7 and 1.6% of EFO, respectively. On average, the NEP (through uptake of CO2) represented 88% of the negative radiative forcing, and exported C represented 88% of the positive radiative forcing of a mean total GHGB of 203 +/- 253 gC-eq m(-2) year(-1). Finally, CE differed considerably among crops and according to management practices within a single crop. Because the CE was highly variable, it is not suitable at this stage for use as an emission factor for management recommendations, and more studies are needed to assess the effects of management on crop efficiency.
  • Authors:
    • Schulze, E. D.
    • Houwelling, S.
    • Rivier, L.
    • Friedrich, R.
    • Scholz, Y.
    • Pregger, T.
    • Levin, I.
    • Piao, S. L.
    • Peylin, P.
    • Marland, G.
    • Paris, J. D.
    • Ciais, P.
  • Source: Global Change Biology
  • Volume: 16
  • Issue: 5
  • Year: 2010
  • Summary: We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU-25 member states have experienced an increase in emissions, reversing after a decade-long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between-models uncertainty is as large as 19% of the mean for EU-25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, non-energy products). Once these inconsistencies are corrected, the between-models uncertainty can be reduced down to 7% at EU-25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than ~200 km. At 100 km resolution, for example, the uncertainty of regional emissions is estimated to be 60 g C m-2 yr-1, up to 50% of the mean. The uncertainty on regional fossil-fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.
  • Authors:
    • Valentini, R.
    • Tubaf, Z.
    • Sutton, M.
    • Manca, G.
    • Stefani, P.
    • Skiba, U.
    • Rees, R. M.
    • Baronti, S.
    • Raschi, A.
    • Neftel, A.
    • Nagy, Z.
    • Martin, C.
    • Kasper, G.
    • Jones, M.
    • Horvath, L.
    • Hensen, A.
    • Fuhrer, J.
    • Flechard, C.
    • Domingues, R.
    • Czobel, S.
    • Clifton-Brown, J.
    • Ceschia, E.
    • Campbell, C.
    • Amman, C.
    • Ambus, P.
    • Pilegaard, K.
    • Allard, V.
    • Soussana, J. F.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 121
  • Issue: 1-2
  • Year: 2007
  • Summary: The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
  • Authors:
    • O'Mara, F. P.
    • Dillon, P.
    • Shalloo, L.
    • Lovett, D. K.
  • Source: Agricultural Systems
  • Volume: 88
  • Issue: 2-3
  • Year: 2006
  • Summary: A model was developed to determine what effect management practices would have on the production of the greenhouse gases (GHG) within pastorally based dairy production systems typical of those practiced in Ireland. The model simulates two levels of GHG emissions, firstly the on-farm GHG emissions of methane, nitrous oxide and carbon dioxide for example from the pastorally spreading of slurry and secondly, off-farm GHG emissions associated with both inputs brought onto the farm to maintain productivity (for example emissions arising from manufacture of concentrate feeds and fertiliser) as well as from indirect GHG emissions associated with nitrate leaching and ammonia. The aim of this work was to allow the development of effective GHG mitigation strategies at the farm level capable of reducing GHG emissions per litre of milk. Greenhouse gas emissions were modelled for nine farming systems differing in the level of concentrate supplementation (376, 810 and 1540 kg per cow per lactation) and genotype for milk production as assessed by their pedigree index (<100, 100-200 and 200-300 kg) of milk production. A three-year study to evaluate the influence of cow genetic potential for milk production and concentrate supplementation level on profitability of pasture-based systems of milk production was used to drive the Moorepark Dairy Systems Model (MDSM). Output from this model then described farm size, feed budgets, animal numbers and farm profitability when annual milk quota was set to 468,000 kg of milk year. Relating GHG emissions to annual milk sales revealed that for these pastorally based systems increasing concentrate usage reduced both on-farm and off-farm emissions, but that increasing the genotype of the dairy cow (i.e., the genetic capacity of the animal to produce milk) will increase both on-farm and off-farm GHG emissions. Lowest GHG emissions per kilogram of milk were achieved for an intermediate genotype type cow fed within a high concentrate system whilst the highest emissions were associated with high genotype cows fed within a low concentrate system. Maximum profitability was obtained when either a high concentrate feeding regime was combined with high genotype cows or where low concentrate systems were fed to low genotype cows. Relating farm profitability to GHG emissions allowed the identification of scenarios where changing from one management systems to another would achieve a simultaneous reduction in GHG emissions whilst improving farm profitability. By implementing this approach of assessing management induced change on both GHG emissions arising from the farm together with farm profitability, individual whole farm GHG mitigation strategies could be developed with a high degree of acceptability to the producer.