• Authors:
    • Snelder, D. J.
  • Source: Agroforestry Systems
  • Volume: 52
  • Issue: 3
  • Year: 2001
  • Summary: Frequent burning and grazing and cultivation of cash crops increasingly threaten forest patches in hilly grassland in Northeast Luzon, yet their importance as a resource with multiple environmental functions and forest products persists. The aim of this study is to identify different types of forest patches, and their condition under present land-use intensification, and discuss prospects for their integration into sustainable local farming systems. Five types of forest patches are distinguished, both natural and planted ones, including rows of trees, woody patches, gallery forests, hill-slope forests and homegarden conglomerations. Natural woody patches and gallery forests in Imperata grassland are subject to degradation and land-use conversion under conditions of agricultural intensification. Woody patches in grassland affected by frequent burning and grazing cover small areas (66% below 50 m(2) as opposed to 28% in protected grassland) and contain relatively few woody plant species (25 woody species in total as opposed to 82 where protected). Yet where well managed, they may provide a variety of products for sale and subsistence, covering emergency needs and giving off-season cash income to rural communities. Moreover they serve like the gallery forest various ecological functions, carrying valuable indigenous tree species, retaining soil base nutrients, providing a continuous supply of organic matter and intercepting fine earth soil particles removed from bare surfaces. It is suggested that forest- patch management systems may be developed, taking into account both patch diversity and the diverse needs of rural communities, and to strengthen existing and undervalued functions of forest patches as permanent elements in an agricultural landscape.
  • Authors:
    • Johnson, D. E.
    • Minami, K.
    • Heinemeyer, O.
    • Freney, J. R.
    • Duxbury, J. M.
    • Mosier, A. R.
  • Source: Climatic Change
  • Volume: 40
  • Issue: 1
  • Year: 1998
  • Summary: Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.
  • Authors:
    • Silburn, D. M.
    • Dimes, J. P.
    • Nelson, R. A.
    • Paningbatan, E. P.
    • Cramb, R. A.
  • Source: Agricultural Systems
  • Volume: 58
  • Issue: 2
  • Year: 1998
  • Summary: A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
  • Authors:
    • Partoharjon, S.
    • Hairiah, K.
    • VanNoordwijk, M.
    • Labios, R. V.
    • Garrity, D. P.
  • Source: Agroforestry Systems
  • Volume: 36
  • Issue: 1-3
  • Year: 1996
  • Summary: Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, labour investment increases and returns to labour tend to decrease in successive years as weed pressure intensifies and soil quality declines. Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the labour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades. On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But labour is the scarcest resource on small farms and tree-pruning is usually too labour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize labour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses. The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.
  • Authors:
    • Partoharjono, S.
    • Hairiah, K.
    • Van Noordwijk, M.
    • Labios, R. V.
    • Garrity, D. P.
  • Source: Agroforestry Systems
  • Volume: 36
  • Issue: 1-3
  • Summary: Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, tabour investment increases and returns to tabour tend to decrease in successive years as weed pressure intensifies and soil quality declines. Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the tabour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades. On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But tabour is the scarcest resource on small farms and tree-pruning is usually too tabour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize tabour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses. The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.