• Authors:
    • Scialabba, N.
    • Hepperly, P.
    • Fließbach, A.
    • Niggli, U.
  • Year: 2009
  • Authors:
    • Oberholzer, H.
    • Reiser, R.
    • Leifeld, J.
  • Source: Agronomy Journal
  • Volume: 101
  • Issue: 5
  • Year: 2009
  • Summary: Organic farming practices are regarded as being beneficial for the environment by promoting soil quality and sequestering soil organic carbon (SOC). We studied SOC dynamics in the long-term field experiment DOK in Switzerland. The experiment compares three organically fertilized treatments under conventional (CONFYM), bioorganic (BIOORG), and biodynamic (BIO-DYN) management, and two systems with (CONMIN) or without (NOFERT) mineral fertilizer. We analyzed measured SOC time series from 1977 to 2004 and applied soil fractionation, radiocarbon dating, and modeling with the carbon model RothC. The SOC declined significantly in most parcels, but was not systematically different between systems. Initial SOC contents correlated with soil texture and were identified as being important with respect to the change rate. The SOC loss was at the expense of mineral-associated carbon whereas the more labile fractions increased. The overall decline was explained by reduced carbon inputs since commencement of the experiment and was most pronounced in NOFERT and CONMIN. The model satisfactorily simulated the dynamics of most of the treatments for both initialization with equilibrium runs or measured SOC fractions. Carbon loss in CONFYM was not fully captured by the model. Composition of organic fertilizers depended on the particular management, and a model adjustment of their relative stability improved the match between model and measurements. Model runs without management effects indicated that the observed increase in temperatures at the experimental site does not induce a change in SOC. Overall, the study does not support a benefit of organic farming on SOC contents compared with conventional systems with manure.
  • Authors:
    • Mermillod, G.
    • Bohren, C.
    • Wirth, J.
    • Delabays, N.
    • de Joffrey, J. -P
  • Source: Revue Suisse d'Agriculture
  • Volume: 41
  • Issue: 6
  • Year: 2009
  • Summary: Allelopathy, the interaction between plants mediated by chemicals, is drawing growing interest the last few years, especially in agriculture. This phenomenon Could be helpful to optimise weed management in cultivated fields, for instance through allelopathic cultivars breeding, laying of allelopathic ground covers or insertion of allelopathic crops in the rotation scheme. This approach is welcome, particularly with present need of alternatives to chemical weed control. Nevertheless, allelopathy still remains controversial, mainly because it is often difficult to unambiguously distinguish it experimentally from competition effects. This paper presents a synthesis of our results with Artemisia annua, producing artemisinin, a molecule with very potent phytotoxic propel-ties. The mose of action of artemisinin could be demonstrated under lab, greenhouse and field conditions, whereby confirming the reality of allelopathic phenomenon. Preliminary results are also presented concerning the putative role played by this molecule in natural conditions. Lastly, ongoing works using others species, aimed at providing a practical use of allelopathy for weed management of cultivated fields, is briefly described.
  • Authors:
    • Weisskopf, P.
    • Leifeld, J.
    • Anken, T.
    • Hermle, S.
  • Source: Soil & Tillage Research
  • Volume: 98
  • Issue: 1
  • Year: 2008
  • Summary: Soil tillage and its interaction with climate change are widely discussed as a measure fostering carbon sequestration. To determine possible carbon sinks in agriculture, it is necessary to study carbon sequestration potentials in relation to agricultural management. The aim of this paper is to evaluate the soil carbon sequestration potential of a site in north-eastern Switzerland under different tillage systems. The study was performed as a long-term (19-year) trial on an Orthic Luvisol (sandy loam) with a mean annual air temperature of 8.4 °C and a long-term precipitation mean of 1183 mm. The soil organic carbon (SOC) concentration was determined five times during the study period, with the paper focussing mainly on the year 2006. The main objective was to quantify the influence of mouldboard ploughing (PL), shallow tillage (ST), no-tillage (NT) practices, and grassland (GL) on soil organic carbon content, the latter's different fractions (labile, intermediate, and stable), and its distribution by depth. In calculating the SOC content of the whole soil profile, we included a correction factor accounting for variations in bulk density (equivalent soil mass). The total SOC stock at a depth of 0-40 cm was 65 Mg C ha-1, and although higher under GL, did not differ significantly between PL, ST, and NT. SOC concentrations per soil layer were significantly greater for NT and ST (0-10 cm) than for PL, which had greater SOC concentrations than NT and ST at 20-30 cm depth. Both SOC concentrations and stocks (0-20 cm) were largest under GL. In all treatments, most of the carbon was found in the intermediate carbon fraction. There was no significant difference in any of the three SOC fractions between NT and ST, although there was between ST and PL. A sharp decrease in C-concentrations was observed in the first 7 years after the transition from grassland to arable land, with a new equilibrium of the carbon concentration in the 0-40 cm layer being reached 12 years later, with no significant difference between the tillage treatments. Overall, the results indicate that effects of tillage on soil carbon are small in moist, cold-temperate soils, challenging conversion into no-till as a measure for sequestering C.
  • Authors:
    • Valentini, R.
    • Tubaf, Z.
    • Sutton, M.
    • Manca, G.
    • Stefani, P.
    • Skiba, U.
    • Rees, R. M.
    • Baronti, S.
    • Raschi, A.
    • Neftel, A.
    • Nagy, Z.
    • Martin, C.
    • Kasper, G.
    • Jones, M.
    • Horvath, L.
    • Hensen, A.
    • Fuhrer, J.
    • Flechard, C.
    • Domingues, R.
    • Czobel, S.
    • Clifton-Brown, J.
    • Ceschia, E.
    • Campbell, C.
    • Amman, C.
    • Ambus, P.
    • Pilegaard, K.
    • Allard, V.
    • Soussana, J. F.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 121
  • Issue: 1-2
  • Year: 2007
  • Summary: The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
  • Authors:
    • Sturny, W. G.
    • Ramseier, L.
    • Chervet, A.
    • Tschannen, S.
  • Source: Revue Suisse d'Agriculture
  • Volume: 12
  • Issue: 5
  • Year: 2005
  • Summary: Over the last ten years, conventional plough tillage has been compared to no-tillage on six crop rotation plots in the long-term field trial Oberacker at the Inforama Ruetti in Zollikofen, Switzerland. The deep cambisol of the trial plots contains 15% clay and 3% organic matter. The absence of tillage operations in no-tillage makes a more complex strategy for weed control necessary. Options such as a balanced crop rotation, permanent soil cover, adapted crop residue management and immediate seeding of subsequent crops are used alongside chemical, mechanical, and thermal strategies of weed control. Land use is sustainable in the no-tillage system: No-tilled soil has a higher structural stability and load capacity while being markedly less prone to erosion; less machine usage and traffic reduce (fuel) costs. After seven years of no-tillage, continuous release of soil-borne nitrogen leads to crop yields and qualities at least equal to those obtained with conventional tillage. Two challenges remain only partly solved: (a) the greater dependence on herbicides such as glyphosate and (b) the greater risk of mycotoxin formation in no-tilled winter cereal crops that follow maize. Remedies include adaptations of the crop rotation, chopping of residual maize straw/stalks and cropping of cereal varieties less susceptible to fusarium. In conclusion, no-tillage contributes substantially to maintaining soil fertility on a long-term basis.
  • Authors:
    • Wiemken, A.
    • Boller, T.
    • Mader, P.
    • Ineichen, K.
    • Sieverding, E.
    • Oehl, F.
  • Source: Applied and Environmental Microbiology
  • Volume: 69
  • Issue: 5
  • Year: 2003
  • Summary: The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the "three-country corner" of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for "AMF trap cultures" with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites ("generalists"); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.
  • Authors:
    • Cadisch, G.
    • Hartwig, U. A.
    • Richter, M.
    • Baggs, E. M.
  • Source: Global Change Biology
  • Volume: 9
  • Issue: 8
  • Year: 2003
  • Summary: Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 [micro]L L-1) and elevated (600 [micro]L L-1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m-2 yr-1) and low (14 g N m-2 yr-1) rates of fertilizer application, split over 5 re-growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m-2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2 Lolium swards were attributed to greater below-ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O-N m-2 yr-1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2 Lolium swards measured during the first two re-growths (April-June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re-growths (April-June 2001) and the third, fourth and fifth re-growths (late June-October 2000), with available soil NO3- and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short-term measurements to predict long-term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.
  • Authors:
    • Samu, F.
    • Sunderland, K.
  • Source: Entomologia Experimentalis Et Applicata
  • Volume: 95
  • Issue: 1
  • Year: 2000
  • Summary: A review of the literature showed that spider abundance was increased by diversification in 63% of studies. A comparison of diversification modes showed that spider abundance in the crop was increased in 33% of studies by `aggregated diversification' (e.g. intercropping and non-crop strips) and in 80% of studies by `interspersed diversification' (e.g., undersowing, partial weediness, mulching and reduced tillage). It is suggested that spiders tend to remain in diversified patches and that extending the diversification throughout the whole crop (as in interspersed diversification) offers the best prospects for improving pest control. There is little evidence that spiders walk in significant numbers into fields from uncultivated field edges, but diversification at the landscape level serves to foster large multi-species regional populations of spiders which are valuable as a source of aerial immigrants into newly planted crops. There are very few manipulative field studies where the impact of spiders on pests has been measured in diversified crops compared with undiversified controls. It is encouraging, however, that in those few studies an increased spider density resulted in improved pest control. Future work needs are identified.