• Authors:
    • Napit, K. B.
    • Bosch, D. J.
  • Source: Journal of Soil and Water Conservation
  • Volume: 47
  • Issue: 4
  • Year: 1992
  • Summary: Rapid expansion of the Virginia poultry industry has resulted in poultry litter production that in certain areas exceeds the potential for use in crop agriculture. If land application exceeds crop requirements, litter production may result in environmental damage. In this study, potential litter surpluses in intensive poultry-producing Virginia counties were quantified. The costs of transferring such surpluses to litter-deficient areas were compared with the economic value of litter as fertilizer. Estimates of potential cropland and pasture for spreading litter took dairy manure production into account. Use of litter surpluses by transfer was found to be economically viable. Public policy actions are needed, however, to promote such transfer.
  • Authors:
    • Bishnoi, S. R.
    • Mosier, A. R.
    • Bronson, K. F.
  • Source: Soil Science Society of America Journal
  • Volume: 56
  • Issue: 1
  • Year: 1992
  • Summary: Nitrous oxide and N2 are the major denitriflcation products in irrigated corn (lea mays L.). In addition, N2O is considered a gas that contributes to global warming and stratospheric O3 depletion. Minimizing NjO emissions in cropping systems is therefore an economic as well as an important environmental concern. In a 1989 field experiment, the nitrification inhibitor encapsulated calcium carbide (ECC) (0,20, or 40 kg CaC2 ha-') or nitrapyrin (0.5 L a.i. ha-1) was banded with urea (218 kg N ha-') 7 wk after planting com. Between 1 and 14 wk after fertilization in 1989, N2O losses of 3226, 1109,1017, and 1005 g N2O-N ha-' from urea alone, urea plus nitrapyrin, urea plus 20 kg ECC ha-1, and urea plus 40 kg ECC ha-1, respectively, were measured from vented chambers. Nitrous oxide fluxes were positively correlated with soil NO, levels, indicating that the nitrification inhibitors indirectly controlled N2O emissions by preventing NO3 from accumulating in the soil. Carbon dioxide emissions from the root zone were generally not affected by ECC or nitrapyrin. In 1990, losses of N2O were less than in 1989 (1651 g N ha-' with urea alone), probably because there were fewer irrigations. Nitrapyrin and ECC addition to urea resulted in 980 and 459 g N ha-1 N2O being emitted the second year. Nitrification inhibitors appear to be a useful tool in mitigating N2O emissions in agricultural systems.
  • Authors:
    • Cole, C.
    • Westfall, D.
    • Peterson, G.
    • Wood, C.
    • Willis, W.
  • Source: Agronomy Journal
  • Volume: 83
  • Issue: 3
  • Year: 1991
  • Summary: Soil-crop management affects the soil-N balance and, thus, has a direct bearing on soil productivity. This study determined the effects of cropping intensity (crops/time) under no-till and grassland establishment on aboveground biomass production and the system-N balance after 4 yr (1985-1989). The effects were examined across toposequences in the West Central Great Plains that had been tilled and frequently fallowed for > 50 yr. Production systems included wheat (Triticum aestivum L.)-fallow (WF), wheat-corn (Zea mays L.) or sorghum (Sorghum vulgare L.)-millet (Panicum miliaceum L.)-fallow (WCMF), and perennial grass (CG). Intense agronomic systems (WCMF) had greater aboveground production, greater N uptake, and greater percent plant residue retention than WF. Continuous grass systems had less aboveground production and N uptake but greater percent plant residue retention than agronomic systems. Soil-profile NO3-N was lower under WCMF systems than WF systems, but organic N showed the opposite trend implying that more intense systems are at less risk for NO3-N leaching, and have greater potential for replenishment of soil-organic N via enhanced immobilization. Aboveground biomass production and plant residue production increased downslope, but slope position had little effect on plant-N uptake, plant residue retention, or soil-N dynamics. Imposing no-till and perennial grassland systems created a N-balance disequilibrium, but more time will be required to ascertain the trajectory of N loss or gain due to establishment of no-till or grassland management on these soils.
  • Authors:
    • Shennan, C.
    • Stivers, L. J.
  • Source: Journal of Production Agriculture
  • Volume: 4
  • Issue: 3
  • Year: 1991
  • Summary: Results from the first 2 years of the experiment are used to compare the productivity of several legume green manures and to determine if they can provide adequate available soil N to support yields of a subsequent crop of processing tomatoes (Lycopersicon lycopersicum L. Karsten var. lycopersicum) typical for this area. Lana woolly-pod vetch (Vicia dasycarpa Ten.), bell beans (Vicia faba L.), berseem clover (Trifolium alexandrinum L.), Austrian winter peas (Pisum arvense L.), oats (Avena sativa L.), and an oats and vetch mixture, planted in October and disked under in April, were compared with various levels of ammonium sulfate fertilizer.
  • Authors:
    • Cruse, R. M.
    • Keeney, D. R.
    • Follett, R. F.
  • Year: 1991
  • Authors:
    • Duffy, M.
    • Chase, C.
  • Source: American Journal of Alternative Agriculture
  • Volume: 6
  • Issue: 04
  • Year: 1991
  • Summary: Labor requirements, production costs, yields, and economic returns were evaluated for conventional and reduced-chemical cropping systems in northeast Iowa from 1978 to 1989. Continuous corn (C-C) and corn-soybean (C-Sb) rotations represented the conventional system; a corn-oat-meadow (C-O-M) rotation represented the reducedchemical system. The C-C and C-Sb rotations used both commercial pesticides and fertilizers. The C-O-M rotation used manure for fertilization and applied pesticides only in emergencies. Operations for all systems were implemented by one farm manager. The C-Sb rotation had the highest corn yield over the 12-year period, and the C-O-M rotation the lowest. The corn within the C-O-M rotation, however, produced the second highest average return to land, labor, and management. With costs of production substantially lower than the conventional systems, the C-O-M corn crop had competitive returns despite lower yield. The C-Sb average return to land, labor, and management was significantly higher than for the other systems. Hourly labor charges of $4, $10, $20, and $50 had little effect on the rankings of economic returns. Because of unusually high alfalfa reseeding costs and low average oat yields, returns to the C-O-M rotation were significantly lower than C-Sb but comparable to C-C. With better alfalfa establishment and higher average oat yields, the reduced-chemical system might have been competitive with the C-Sb conventional system.
  • Authors:
    • Kitchen, N. R.
  • Source: Dissertation Abstracts International. B, Sciences and Engineering
  • Volume: 51
  • Issue: 8
  • Year: 1990
  • Summary: A long-term study was conducted at 2 sites in E. Colorado to study the influence of N fertilizer rate and source/placement/timing (NSP), and crop rotation wheat/fallow (WF), and wheat, maize or sorghum/fallow (MSF) on no-tillage dryland cropping systems. Grain yield and vegetative biomass increased linearly with fertilizer N rate up to 84 kg/ha for wheat and 101 kg/ha for maize indicating that current N recommendations at Colorado State University may be insufficient for meeting N needs of no-tillage crops. N fertilizer recovery efficiency (NFRE) decreased with N fertilizer rate. Production increased more with N fertilizer additions in the MSF than in the WF rotation system. If differences occurred with NSP treatments, banding gave greater production and NFRE than broadcast application. In 1989 at one location, wheat production from the MSF rotation was greater than from the WF rotation. The av. annual grain and vegetative production from MSF was approx. double that produced in the WF cropping system. Water conservation with no-tillage systems allowed more intense cropping than a WF rotation. N loss from the MSF rotation was significant, increased with N rate and was attributed to N loss in both inorganic- and organic-N pools. Nitrate leaching in the no-tillage MSF rotation was unlikely since NO 3 decreased with soil depth.
  • Authors:
    • Evanylo, G. K.
  • Source: Communications in Soil Science and Plant Analysis
  • Volume: 21
  • Issue: 1-2
  • Year: 1990
  • Summary: Crop response to fertilizer nitrogen (N) is dependent upon tillage management. This study was conducted to determine how tillage rotation influences non‐irrigated crop growth, N uptake and yield. The effects of tillage rotation, N rate and N timing schedule on early season dry matter production and N uptake, ear leaf N concentration at silking, and yield of corn [Zea mays (L.) Pioneer 3378] were investigated at Painter, VA, on an Altavista loam (fine‐loamy, mixed, thermic Aquic Hapludult). In 1986, maximum yields achieved in the 6‐year continuous no till (NT) [5.82 Mg/ha] and first year no till (AT) [5.64 Mg/ha] were significantly greater than that of the 6‐year continuous conventional till (CT) [3.67 Mg/ha], but no yield differences were obtained in the drier 1987 season. A higher rate of N fertilizer was required to obtain maximum yield in the first year no till (168 kg N/ha) than in the NT (112 kg N/ha) during 1986. Early 1986 N uptake and growth response with and without N at planting increased in the order CT < AT = NT and AT < CT < NT, respectively, indicating greatest immobilization of soil N occurred in the newly established no till soil. Lack of differences in critical ear leaf N values developed for NT and CT in each year imply that plant norms developed for one tillage system may accurately assess N status of corn grown under different tillage practices.
  • Authors:
    • Whitford, W. G.
    • Virginia, R. A.
    • Jarrell, W. M.
    • Huenneke, L. F.
    • Cunningham, G. L.
    • Reynolds, J. F.
    • Schlesinger, W. H.
  • Source: Science
  • Volume: 247
  • Issue: 4946
  • Year: 1990
  • Summary: Studies of ecosystem processes on the Jornada Experimental Range in southern New Mexico suggest that long-term grazing of semiarid grasslands leads to an increase in the spatial and temporal heterogeneity of water, nitrogen, and other soil resources. Heterogeneity of soil resources promotes invasion by desert shrubs, which leads to a further localization of soil resources under shrub canopies. In the barren area between shrubs, soil fertility is lost by erosion and gaseous emissions. This positive feedback leads to the desertification of formerly productive land in southern New Mexico and in other regions, such as the Sahel. Future desertification is likely to be exacerbated by global climate warming and to cause significant changes in global biogeochemical cycles.
  • Authors:
    • Deibert, E. J.
  • Source: Agronomy Journal
  • Volume: 81
  • Issue: 4
  • Year: 1989
  • Summary: Information on response of soybean [Glycine max (L.) Merr.] cultivars to reduced tillage systems in northern dryland areas is limited. A 4-yr field study (1984 to 1987) was conducted to evaluate the effect of tillage system, weed control method, and cultivar maturity on soybean seed yield variables. An early and a late-maturing soybean cultivar were grown on a Fargo clay (fine, montmorillonitic frigid Vertic Haplaquoll) on established tillage plots. Tillage systems included conventional (moldboard plow) and three reduced tillage systems (sweep, intertill, and no-till) with herbicides or herbicides plus cultivation for weed control. Climatic conditions resulted in differences among years in seed yield, seed weight, seed moisture, seed oil concentration, and seed oil yield. These seed variables were not significantly influenced by tillage system, weed control method, or cultivar maturity when grown in rotation with barley (Hordeum vulgare L.), but showed significant interactions. Cultivation for weed control depressed seed yield and weight of only the early cultivar. Early plant water stress (June and July) lowered yield of the early cultivar more than the late cultivar. Early cultivar no-till yields (1240 kg ha−1) were greater than tilled system yields (average 1070 kg ha−1). while late cultivar yields were similar among systems (average 1420 kg ha−1). An early maturing cultivar performed similarly to a late-maturing cultivar irrespective of tillage system unless early plant water stress was encountered. Fall application of granular herbicide provided good weed control, but cultivation for weed control was not beneficial for the yields parameters measured.