• Authors:
    • Lafond, G. P.
    • Zentner, R. P.
    • Biederbeck, V. O.
    • Campbell, C. A.
  • Source: Canadian Journal of Soil Science
  • Volume: 71
  • Issue: 3
  • Year: 1991
  • Summary: The effects of crop rotations and various cultural practices on soil organic matter quantity and quality in a Rego, Black Chernozem with a thin A horizon were determined in a long-term study at Indian Head, Saskatchewan. Variables examined included: fertilization, cropping frequency, green manuring, and inclusion of grass Jegume hay crop in predominantly spring wheat (Triticum aestiyum L.) production systems. Generally, fertilizer increased soil organic C and microbial biomass in continuous wheat cropping but not in fallow-wheat or fallow-wheat-wheat rotations. Soil organic C, C mineralization (respiration) and microbial biomass C and N increased (especially in the 7.5- to l5-cm depth) with increasing frequency of cropping and with the inclusion of legumes as green manure or hay crop in the rotation. The influence of treatments on soil microbial biomass C (BC) was less pronounced than on microbial biomass N. Carbon mineralization was a good index for delineating treatment effects. Analysis of the microbial biomass C/N ratio indicated that the microbial suite may have been modified by the treatments that increased soil organic matter significantly. The treatments had no effect on specific respiratory activity (CO2-C/BC). However, it appeared that the microbial activity, in terms of respiration, was greater for systems with smaller microbial biomass. Changes in amount and quality of the soil organic matter were associated with estimated amount and C and N content of plant residues returned to the soil.
  • Authors:
    • Duffy, M.
    • Chase, C.
  • Source: American Journal of Alternative Agriculture
  • Volume: 6
  • Issue: 04
  • Year: 1991
  • Summary: Labor requirements, production costs, yields, and economic returns were evaluated for conventional and reduced-chemical cropping systems in northeast Iowa from 1978 to 1989. Continuous corn (C-C) and corn-soybean (C-Sb) rotations represented the conventional system; a corn-oat-meadow (C-O-M) rotation represented the reducedchemical system. The C-C and C-Sb rotations used both commercial pesticides and fertilizers. The C-O-M rotation used manure for fertilization and applied pesticides only in emergencies. Operations for all systems were implemented by one farm manager. The C-Sb rotation had the highest corn yield over the 12-year period, and the C-O-M rotation the lowest. The corn within the C-O-M rotation, however, produced the second highest average return to land, labor, and management. With costs of production substantially lower than the conventional systems, the C-O-M corn crop had competitive returns despite lower yield. The C-Sb average return to land, labor, and management was significantly higher than for the other systems. Hourly labor charges of $4, $10, $20, and $50 had little effect on the rankings of economic returns. Because of unusually high alfalfa reseeding costs and low average oat yields, returns to the C-O-M rotation were significantly lower than C-Sb but comparable to C-C. With better alfalfa establishment and higher average oat yields, the reduced-chemical system might have been competitive with the C-Sb conventional system.
  • Authors:
    • Evanylo, G. K.
  • Source: Communications in Soil Science and Plant Analysis
  • Volume: 21
  • Issue: 1-2
  • Year: 1990
  • Summary: Crop response to fertilizer nitrogen (N) is dependent upon tillage management. This study was conducted to determine how tillage rotation influences non‐irrigated crop growth, N uptake and yield. The effects of tillage rotation, N rate and N timing schedule on early season dry matter production and N uptake, ear leaf N concentration at silking, and yield of corn [Zea mays (L.) Pioneer 3378] were investigated at Painter, VA, on an Altavista loam (fine‐loamy, mixed, thermic Aquic Hapludult). In 1986, maximum yields achieved in the 6‐year continuous no till (NT) [5.82 Mg/ha] and first year no till (AT) [5.64 Mg/ha] were significantly greater than that of the 6‐year continuous conventional till (CT) [3.67 Mg/ha], but no yield differences were obtained in the drier 1987 season. A higher rate of N fertilizer was required to obtain maximum yield in the first year no till (168 kg N/ha) than in the NT (112 kg N/ha) during 1986. Early 1986 N uptake and growth response with and without N at planting increased in the order CT < AT = NT and AT < CT < NT, respectively, indicating greatest immobilization of soil N occurred in the newly established no till soil. Lack of differences in critical ear leaf N values developed for NT and CT in each year imply that plant norms developed for one tillage system may accurately assess N status of corn grown under different tillage practices.
  • Authors:
    • Power, J. F.
    • Doran, J. W.
    • Wilhelm, W. W.
  • Source: Agronomy Journal
  • Volume: 78
  • Year: 1986
  • Summary: Crop residues (stover) have many potential uses by society: food, feed, shelter, fuel, and soil amendment. Use of residues for purposes other than as a soil amendment may have serious negative consequences on crop productivity. This study was conducted to investigate the yield response of continuous corn (Zea mays L.) and continuous soybean [Glycine max (L.) Merr.) to removal or addition of crop residues under no-tillage management. The study was conducted near Lincoln, NE, on a Crete-Butler silty clay loam (fine, montmorillonitic, mesic Pachic Arguistoll-Abruptic Argiaquoll) with 1 to 2% slope. Crop residue was collected and weighed immediately after harvest in autumn. Quantity of residue to be returned to each treatment (0, 50, 100, or 150% of that produced) was calculated and uniformly spread over the plot area (12.2 by 12.2 m) by hand. Corn and soybean were planted into the established residue levels with no tillage the following spring. Data were collected on soil water, soil temperature, and grain and residue yield. A positive linear response was found between grain and stover yield and amount of residue applied to the soil surface. Each Mg ha-1 of residue removed resulted in about a 0.10 Mg ha"1 reduction in grain yield and a 0.30 Mg ha-1 reduction in residue yield. Quantity of applied residue accounted for 81 and 84% of the variation in grain yield of corn and soybean, respectively, and 88 and 92% of the variation in residue yield. Amounts of stored soil water at planting were closely associated with quantity of residue applied the previous year. Differences in total available water (soil storage at planting plus rainfall) accounted for approximately 70% of the yield variation associated with the residue treatments. Soil temperature (50-mm depth) and total available water accounted for nearly the same amount of variation in yield (80 to 90%) as quantity of residue, emphasizing the importance of these factors in evaluating response of crops to residue-management practices. Residue removal reduced grain and residue yields by amounts equal to 10 and 30%, respectively, of the quantity of residue removed. Residue effects on crop yield were induced mainly through changes in soil water and soil temperature.
  • Authors:
    • Partoharjono, S.
    • Hairiah, K.
    • Van Noordwijk, M.
    • Labios, R. V.
    • Garrity, D. P.
  • Source: Agroforestry Systems
  • Volume: 36
  • Issue: 1-3
  • Summary: Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, tabour investment increases and returns to tabour tend to decrease in successive years as weed pressure intensifies and soil quality declines. Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the tabour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades. On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But tabour is the scarcest resource on small farms and tree-pruning is usually too tabour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize tabour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses. The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.