• Authors:
    • Vazin, F.
    • Abbasi, M.
  • Source: Advances in Environmental Biology
  • Volume: 6
  • Issue: 4
  • Year: 2012
  • Summary: In most areas of Isfahan Province, the maize is cultivated as a second crop after harvesting the wheat or barely and the farmers of this region are confronting with time-limit problems in performing correct yield of providing the soil bed, and the tillage is an expensive and energy-consuming yield. Thus, for examining the effect of tillage on the elimination of mechanical yield and saving the time and the expense of performing yield as well as the effect of appropriate date for planting the maize on the performance and its components, an experiment is conducted as a split plot design, 4 times in the agricultural year 2010 in Mourchekhort area of Isfahan. The factors including tillage in two levels (Current Tillage "CT" and Non-tillage "NT") on the main plot and the planting date in three levels (29 th June-15 th July-28 th July) with 15-day interval on the secondary plot were operated on the maize sort No. I704. The tillage system is not significantly effective on the biological performance. In tillage system, the performance of the grain, the number of corns in the maize row and the total number of corn in the maize showed respectively 10%, 12% and 22% increases, compared to those in nontillage system. On 29 th June, the weight of one-thousand corns was decreased 13% and the performance of the corn, the number of corns in the maize row and the total number of corns in the maize was respectively increased in 35%, 16% and 30% compared to those on 29 th July. Reciprocal effect of tillage system and planting dates didn't effect on the corn's performance and its components. Considering the results achieved, the best planting date for both tillage systems in this area is 29 th June.
  • Authors:
    • Coquet, Y.
    • Justes, E.
    • Benoit, P.
    • Alletto, L.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 153
  • Year: 2012
  • Summary: Water drainage and herbicide degradation and leaching were studied during four years in a continuous maize field managed with two tillage systems and two types of fallow periods. The tillage systems consisted of either a conventional practice with mouldboard ploughing (28 cm-depth) or a conservation practice with superficial tillage (
  • Authors:
    • Beasley, J. P.,Jr.
    • Tubbs, R. S.
    • Lee, R. D.
    • Grey, T. L.
    • Jackson, J. L.
  • Source: Peanut Science
  • Volume: 38
  • Issue: 1
  • Year: 2011
  • Summary: Most peanut ( Arahcis hypogaea L.) production occurs under highly intensive conventional tillage systems. With recent volatility in input prices, reducing tillage trips is a viable way of reducing production costs. However, growers can experience yield loss when switching from conventional tillage to strip-tillage in peanut on certain soil types due to the lack of an elevated bed at harvest time. Studies were conducted to compare standard strip-till with strip-till on two-row raised beds as well as rip and beds prepared in the fall. Comparisons were made on a coarse textured soil at Tifton, GA and a fine textured soil at Plains, GA. The three bed types, with and without wheat cover, were evaluated over two years at both locations. No effects of cover or interactions with bed type were present. At Plains, the rip and bed and raised bed reduced digging losses by 62 and 47%, respectively. Soil compaction within the harvest depth was reduced by 3.3 and 4.7 times by the raised bed and rip and bed, respectively compared to flat strip-till. The rip and bed increased peanut yield by 465 kg ha -1 over flat bed. At Tifton, no significant differences in yield or digging losses occurred between tillage methods. Soil compaction in the harvest depth was reduced by 1.9 and 2.5 times by raised bed and rip and bed, respectively on this coarse soil type. Reduced compaction and digging losses along with increased yield suggest bedding is more important on finer textured soils.
  • Authors:
    • Jossi, W.
    • Zihlmann, U.
    • Heijden, M. van der
    • Anken, T.
    • Dorn, B.
  • Source: Agrarforschung Schwei
  • Volume: 18
  • Issue: 10
  • Year: 2011
  • Summary: Earthworm activity improves soil fertility. In arable crop rotations highest earthworm populations are usually found in leys. The impact of tillage system and tillage intensity on earthworm populations was studied in the two long term trials at Burgrain (Albertswil LU) and at Hausweid (Aadorf TG). At Burgrain having a crop rotation lasting six years and including a ley, no significant difference of earthworm biomass was found between ploughed plots and plots with in the sampling period 2004-2008 in the tillage system using minimum tillage (mulch drilling for oilseed rape and sowing with a rotary band cultivator rotary band seeding for silage maize) (IP extensive) compared to ploughing in both, the organic as well as the integrated production (IP intensive). In contrast, at Hausweid having a four years crop rotation at Hausweid without ley, earthworm populations differed significantly depending on tillage system and tillage intensity after 21 years of the trial. Earthworm biomass reached 330 g per m 2 in the permanent grassland adjacent to the trial whereas it was reduced by 50% in the no-till and even by 80% in the ploughed plots. Additionally, average earthworm species diversity in permanent grassland and no-till was 30% higher than in ploughed tillage system. These findings confirm the positive impact of no-till on the increase of earthworm populations and species diversity.
  • Authors:
    • Machado, S.
  • Source: Agronomy Journal
  • Volume: 103
  • Issue: 1
  • Year: 2011
  • Summary: Use of crop residues for biofuel production raises concerns on how removal will impact soil organic carbon (SOC). Information on the effects on SOC is limited and requires long-term experimentation. Fortunately, Pendleton long-term experiments (LTEs), dating to the 1930s, provide some answers. This study compared crop residue inputs and SOC balance in conventional tillage (CT) winter wheat ( Triticum aestivum L.)-summer fallow (WW-SF) systems with annual rotation of WW and spring pea ( Pisum sativum L.). The WW-SF consisted of crop residue (CR-LTE) (0-90 N ha -1 yr -1, 11.2 Mg ha -1 yr -1 of steer ( Bos taurus) manure and 1.1 Mg ha -1 yr -1) of pea vines additions, residue burning, and tillage fertility (TF-LTE) (tillage-plow, disc, sweep, and N (0-180 kg ha -1)). Winter wheat-pea (WP-LTE) rotation treatments included maxi-till (MT-disc/chisel), fall plow (FP), spring plow (SP), and no-till (NT). Soils were sampled (0-60-cm depth) at 10-yr intervals, and grain yield and residue data collected every year. In WW-SF systems, SOC was maintained only by manure addition and depleted at a rate of 0.22 to 0.42 Mg ha -1 yr -1 in other treatments. In WP-LTE, MT, FP, SP, and NT treatments increased SOC at the rate of 0.10, 0.11, 0.02, and 0.89 Mg ha -1 yr -1, respectively. Minimum straw biomass to maintain soil organic carbon (MSB) in the CR-LTE, TF-LTE, and WP-LTE was 7.8, 5.8, and 5.2 Mg ha -1 yr -1, respectively. Winter wheat-SF straw production was lower than MSB, therefore residue removal exacerbated SOC decline. Harvesting straw residues under NT continuous cropping systems is possible when MSB and conservation requirements are exceeded.
  • Authors:
    • Pozo, A. del
    • Martinez G.,I.
    • Prat, C.
    • Uribe, H.
    • Valderrama V., N.
    • Zagal, E.
    • Sandoval, M.
    • Fernandez, F.
    • Ovalle, C.
  • Source: Chilean Journal of Agricultural Research
  • Volume: 71
  • Issue: 4
  • Year: 2011
  • Summary: Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat ( Avena sativa L. cv. Supernova-INIA) - wheat ( Triticum aestivum L. cv. Pandora-INIA) crop rotation was established under the following conservation systems: no tillage (Nt), Nt+contour plowing (Nt+Cp), Nt+barrier hedge (Nt+Bh), and Nt+subsoiling (Nt+Sb), compared to conventional tillage (Ct) to evaluate their influence on soil water content (SWC) in the profile (10 to 110 cm depth), the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p<0.05) interaction with tillage system and depth; Nt+Sb showed lower SWC between 10 to 30 cm, but higher and similar to the rest between 50 to 110 cm except for Ct. Although, SWC was higher in conservation tillage systems, the high values on soil compaction affected yield. No tillage+subsoiling reduced soil compaction and had a significant increment of grain yield (similar to Ct in seasons 2008 and 2009). These findings show us that the choice of conservation tillage in compacted soils of the Mediterranean region needs to improve soil structure to obtain higher yields and increment SWC.
  • Authors:
    • Benkherbache, N.
    • Rahali, A.
    • Makhlouf, M.
  • Source: Options Mediterraneennes. Serie A, Seminaires Mediterraneens
  • Issue: 96
  • Year: 2011
  • Summary: The objective of the experiment was to study the development of weed in the durum wheat grown under three cropping techniques, conventional, minimum and no till, after two years of implementation, in the semi arid zone of Setif. Weed seed bank has been estimated in the 0-15 and 15-30 cm soil profile as well as surface weed density. Nineteen species were identified, with a predominance of Polygonum aviculare L., Veronica hederifolia L., Chenopodium vulvaria L. and Avena sterilis. Other species, not less important, are annual dicotyledonous largely known in the region, among which Fumaria densiflora, Fumaria officinalis, Sonchus arvensis L., Papaver rhoeas L., Daucus carota L. and Bifora radiens. Monocotyledons dominated under no till with an average plant density of 57.3 plants/m 2 while the dicotyledonous dominated under shallow tillage with an average plant density of 70.5 plants/m 2. Conventional tillage was characterized by equilibrium between both weed families.
  • Authors:
    • Schindler, U.
    • Muller, L.
  • Source: AMA-Agricultural Mechanization in Asia, Africa and Latin America
  • Volume: 42
  • Issue: 4
  • Year: 2011
  • Summary: Efficient water use and intelligent water management are essential for sustainable agricultural production. Long-term soil hydrological measurements were used to quantify deep drainage rates and nitrate losses from arable land managed under various farming regimes (integrated, integrated with irrigation, ecologic and low input) and tillage systems (plough and no till) in the Pleistocene region of Northeast Germany from 1994 to 2007. As dependent on the management system, the nitrate concentration varied between 40 and 150 mg l -1. In connection with annual deep drainage rates between 100 mm and 200 mm during the study period, the annual nitrogen loss varied between 14 and 41 kg ha -1. Differences in nitrogen loss observed between the farming systems were low, but yields increased and nitrogen losses decreased as a result of irrigation throughout the variants. No-till treatment resulted in reduced nitrate leaching (18 kg ha -1) as compared with the tillage systems with plough and tooth cultivator (27 kg ha -1).
  • Authors:
    • Shrivastava, A. K.
    • Satyendra, J
  • Source: Agricultural Engineering International
  • Volume: 13
  • Issue: 2
  • Year: 2011
  • Summary: A tractor drawn (TD) till plant machine was designed and developed with the help of computer aided design package for adoption of minimum till technology by the farmers, in black cotton soil conditions. This machine was evaluated and compared with the performance of a zero till drill and conventional practices at Jawaharlal Nehru Agricultural University farms as well as at a farmer's fields. It was found that the total time and cost required for tillage and sowing operations by till plant machine was 5.09 h/ha and Rs. 410.37/ha, which is 72.23 per cent less time required than conventional practices of wheat cultivation but is 28.83 per cent more time required than zero till drill practices. The average yield by tractor till plant machine was 26.96 q/ha, whereas, by conventional practices and tractor drawn zero till drill was 25.91 and 22.72 q/ha. respectively. The soil conditions were also found better in the case of the T.D. till plant machine.
  • Authors:
    • Mahapatra, B. S.
    • Saini, S. K.
    • Shweta
    • Singh, R. K.
  • Source: Indian Journal of Agricultural Sciences
  • Volume: 81
  • Issue: 2
  • Year: 2011
  • Summary: To ameliorate the ill effects of traditional rice-wheat cropping system efforts have been made to develop several resource conservation technologies. Conventional method of wheat sowing requires intensive pre-planting cultivation, which are labour, time and energy intensive. The field experiment was conducted at Govind Ballabh Pant University of Agriculture and Technology, Pantnagar during rainy season of 2005-06 to winter season of 2006-07. Maximum mean grain (4 237 kg/ha) and straw (6 235 kg/ha) yields of wheat were obtained from direct-seeded rice plots. Nutrient uptake (NPK) by the wheat crop was highest under direct-seeded rice due to rice establishment methods. Maximum mean grain (4 535 kg/ha) and straw (6 423 kg/ha) yields were obtained under zero till. The mean wheat grains/spike under zero till drill wheat was 0.79, 6.93 and 4.09% more than that of strip till drill, bed planted and conventional wheat, respectively. Zero till drill wheat exhibited significantly higher nutrient uptake than that of conventional, bed planted and strip till drill wheat.