• Authors:
    • Sanadze, E.
    • Weismiller, R.
    • Kirvalidze, D.
    • Kvrivishvil, T.
    • Korakhashvili, A.
  • Source: Communications in Soil Science and Plant Analysis
  • Volume: 42
  • Issue: 7
  • Year: 2011
  • Summary: In 2006, the International Organization of Christian Charities (IOCC) began a program in the country of Georgia to establish an improved dairy enterprise in the villages of Minadze and Ghreli in the Akhaltsikhe district. To correctly determine the fertility requirements for the use of either mineral or organic fertilizer materials for improving soil fertility for legume grain crops (beans, peas, soybeans, etc.) and perennial pastures (a mixture of perennial cereal grasses and perennial legumes) and for the proper management of these soils, it was necessary to understand the geomorphic, chemical, and physical characteristics of the soils of this region. Soils of this region belong to a sub-type of Cinnamonic Calcareous soils. The characteristics of these soils as well as their fertility and soil management needs were ascertained. Appropriate amounts of mineral and organic fertilizers needed for the proper growth of legume crops and perennial pastures as well as timing of application are presented.
  • Authors:
    • Paudel, B. R.
    • Anderson, S. H.
    • Udawatta, R. P.
  • Source: Applied Soil Ecology
  • Volume: 48
  • Issue: 2
  • Year: 2011
  • Summary: Establishment of buffers and incorporation of trees and shrubs are believed to improve soil quality and thereby improve water quality from grazed pasture systems. Although enzyme activities and water stable aggregates have been identified as measurable soil quality parameters for early responses to changes in soil management, the literature lacks information on those parameters for grazing systems with agroforestry buffers. The objective of this study was to examine the activities of fluorescein diacetate (FDA) hydrolase, dehydrogenase, beta-glucosidase and beta-glucosaminidase, the percentage of water stable aggregates (WSA) and soil organic carbon and nitrogen as soil quality parameters for grazed pasture and row-crop systems. The study consisted of four management treatments: grazed pasture (GP), agroforestry buffer (AgB), grass buffer (GB) and row-crop (RC). The WSA was determined by wet sieving method while the enzyme activities were colorimetrically quantified using a spectrophotometer in laboratory assays. Soil organic carbon (SOC) and total nitrogen (TN) contents were also determined. Two soil depths (0-10 and 10-20 cm) were analyzed for all treatments. The row-crop treatment showed significantly lower activities compared to all other treatments for beta-glucosidase and beta-glucosaminidase enzymes along with lower WSA. The dehydrogenase activities were significantly higher in GP treatment compared to RC treatment. The FDA hydrolase activities were not significantly different among treatments. Surface soil revealed higher enzyme activities and higher WSA than the sub-surface soil. The treatment by depth interaction was significant for beta-glucosidase and beta-glucosaminidase enzymes. The soil organic carbon and total nitrogen data strongly supported the results of enzyme activities and WSA. Implications can be made that perennial vegetation enhances organic matter accumulation in the soil, has minimum disturbance to the soil and will have positive impacts on the ecosystem.
  • Authors:
    • Santos, H.
    • Fontaneli, R.
    • Spera, S.
    • Dreon, G.
  • Source: Revista Brasileira de Ciencias Agrarias
  • Volume: 6
  • Issue: 3
  • Year: 2011
  • Summary: Soil fertility attributes were evaluated on a typical dystrophic Red Latosol (typic Haplorthox) located in Passo Fundo, State of Rio Grande do Sul, Brazil, twelve years after the establishment (1993, 2000, 2002 and 2005) of five integrated crop/livestock farming production systems: system I - wheat/soybean, white oat/soybean, and common vetch/corn; system II - wheat/soybean, white oat/soybean, and grazed black oat+grazed common vetch/corn; system III - perennial cool season pastures (fescue+white clover+red clover+birds foot trefoil); system IV - perennial warm season pastures (bahiagrass+black oat+rye grass+white clover+red clover+birds foot trefoil); and system V - alfalfa as hay crop. The plots under systems III, IV, and V returned to system I after the summer of 1996. However, in the summer of 2002, in the systems III, IV and V, what used to be crop returned to pasture and what used to be pasture returned to crop. An acidification process occurred in all layers by the lowest pH values and higher concentration and saturation by Al, in comparison to the soil in 1998. The organic matter level and the P, K and Al levels increased between 1998 to 2002, in all sampled layers, while the opposite occurred with pH, Ca and Mg contents.
  • Authors:
    • Clark, H.
    • Molano, G.
    • Muetzel, S.
    • Hoskin, S.
    • Sun, X.
  • Source: Animal Feed Science and Technology
  • Volume: 166/167
  • Year: 2011
  • Summary: Published reports of CH 4 yields as g CH 4/kg dry matter (DM) intake suggest that emissions from sheep fed fresh forage chicory ( Cichorium intybus) are about 30% lower than from those fed fresh ryegrass. In this study, 2 year old wethers (16; 543.8 kg liveweight) were fed either mature chicory or perennial ryegrass at 1.3 times maintenance metabolisable energy requirements in the late spring/early summer of 2009. Methane emissions were determined using individual animal respiration chambers. Feeds differed in their chemical composition with chicory containing 856 g/kg organic matter (OM), 117 g/kg crude protein (CP) and 281 g/kg neutral detergent fibre (aNDF), whereas ryegrass contained 916 g/kg OM, 85 g/kg CP and 499 g/kg aNDF. The DM intake was similar for both forages at 0.76 kg/d, and CH 4 yields did not differ between forages being 22.8 and 23.8 g CH 4/kg DM intake for chicory and ryegrass, respectively. In vitro incubations of chicory and perennial ryegrass in the vegetative or mature states had similar CH 4 yields. Despite large differences in chemical composition, especially aNDF, chicory and ryegrass had similar CH 4 yields in vitro and in vivo. Chicory is not a viable alternative to perennial ryegrass for mitigating CH 4 in pastoral based sheep production systems.
  • Authors:
    • Hubbell, D. S.,III
    • Anders, M. M.
    • Beck, P. A.
    • Hignight, J. A.
    • Watkins, K. B.
    • Gadberry, S.
  • Source: Journal of Soil and Water Conservation
  • Volume: 66
  • Issue: 1
  • Year: 2011
  • Summary: Grazing cattle on winter wheat is a common income-generating practice in the Southern Great Plains, but few Arkansas cattle producers utilize this practice. Many areas in the state with potential to benefit from this practice are highly erodible, and conservation tillage may be needed to best ensure the existing natural resource base is not degraded over time. This study evaluates the profitability and return variability of grazing stocker steers on conservation tillage winter wheat pasture using simulation and stochastic dominance analysis. Average daily gains are simulated for steers grazed on conventional tillage, reduced tillage, and no-till winter wheat pasture using seven years of steer weight gain data from a conservation tillage winter wheat forage study near Batesville, Arkansas. Steer prices and prices for key forage production inputs such as diesel, fertilizer, and glyphosate are also simulated to account for their stochastic impacts on return variability. Steer net return distributions are generated for each tillage system, and first and second degree stochastic dominance are used to rank each tillage system according to specified producer preferences. The results indicate both conservation tillage systems are more profitable and less risky than the conventional tillage system. The conventional tillage system is dominated by no-till based on first degree stochastic dominance and by reduced tillage based on second degree stochastic dominance. Thus both conservation tillage systems would be preferred by risk-averse cattle producers to the conventional tillage system based on this analysis.
  • Authors:
    • Pelissari, A.
    • Moraes, A.
    • Balbinot Junior, A.
    • Veiga, M.
    • Dieckow, J.
  • Source: Revista Brasileira de Agrociencia
  • Volume: 17
  • Issue: 1
  • Year: 2011
  • Summary: The objective of this study was to evaluate the effect of winter soil use on reminiscent straw on the soil, physical characteristic in superficial soil layer and maize performance cultivated in succession. One experiment was carried out in three places in the North Plateau of Santa Catarina State, Brazil, during 2006/07 crop season. Five alternatives of soil use in the winter were investigated: (1) multicropping with black oat+ryegrass+vetch+arrow leaf clover without grazing and nitrogen fertilization (multicropping cover); (2) the same multicropping, with grazing and nitrogen fertilization, 100 kg ha -1 of N (pasture with N); (3) the same multicropping, with grazing and without nitrogen fertilization (pasture without N); (4) oil seed radish, without grazing and nitrogen fertilization (oil seed radish); and (5) natural vegetation, without grazing and nitrogen fertilization (fallow). Higher straw dry mass was verified in multicropping cover. The winter annual pasture in crop-livestock system, cover crops and fallow did not affect the bulk density in 0,02 to 0,07 m of soil layer and maize performance in succession.
  • Authors:
    • Orr, W.
    • Cooper, J.
    • Chataway, R.
    • Cowan, R.
  • Source: Animal Production Science
  • Volume: 51
  • Issue: 10
  • Year: 2011
  • Summary: Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha.crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha.crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double- or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.
  • Authors:
    • Lang, C.
    • Rios, E.
    • Moraes, A.
    • Carvalho, P.
    • Medrado, R.
    • Lopes, E.
  • Source: Scientia Agraria
  • Volume: 12
  • Issue: 2
  • Year: 2011
  • Summary: This study aimed to evaluate the decomposition of the residual dry mass and the initial release of nitrogen from different coverages winter for the subsequent cultivation of maize. The work was conducted in Major Vieira, SC, on a family property. The experimental design was a randomized block, with five treatments (alternative soil cover) and three replications. The treatments: (a) consortium of oat ( Avena strigosa)+ryegrass ( Lolium multiflorum)+vetch ( Vicia spp.)+vesiculoso clover ( Trifolium vesiculosum), with grazing and nitrogen fertilization (100 kg of N); (b) Grassland of black oat+ryegrass+vetch+clover vesiculoso, with grazing and without nitrogen fertilization; (c) coverage (oat+ryegrass+vetch+vesiculoso clover), without grazing and without nitrogen fertilization; (d) forage turnip ( Raphanus sativus), without grazing and without nitrogen fertilization, and (e) fallow (control). The rate of decay was measured through pockets of decomposition (litter bags), collected in seven seasons during the corn crop. The turnip forage was the treatment that was more difficult to decompose according to their chemical characteristics. This limited the supply of nitrogen for the corn crop. Treatment coverage consortium made rapid initial release of N and thus was considered the most appropriate for use in succession with the corn crop. The grazing influenced the release of nitrogen, mainly by the lower amount of total dry mass produced. The grain yield of maize was not influenced by soil cover.
  • Authors:
    • Spera, S.
    • Fontaneli, R.
    • Santos, H.
    • Maldaner, G.
  • Source: PESQUISA AGROPECUARIA BRASILEIRA
  • Volume: 46
  • Issue: 10
  • Year: 2011
  • Summary: The objective of this work was to assess energy conversion and balance of integrated crop-livestock production systems, under no-tillage. The experiment was carried out from 2001 to 2008. From 2001 to 2002, the following systems were evaluated: 1, wheat/soybean, and black oat pasture+common vetch/corn; 2, wheat/soybean, and black oat pasture+common vetch+ryegrass/corn; 3, wheat/soybean and black oat pasture+common vetch/millet pasture; 4, wheat/soybean and black oat pasture+common vetch+rygrass/millet pasture; 5, wheat/soybean, white oat/soybean, and black oat pasture+common vetch/millet pasture; 6, wheat/soybean, white oat/soybean, and black oat pasture+common vetch+rygrass/millet pasture. From 2003 to 2008, the following systems were evaluated: 1, wheat/soybean, and common vetch/corn; 2, wheat/soybean, and black oat pasture/corn; 3, wheat/soybean, and black oat pasture/soybean; 4, wheat/soybean, and field pea/corn; 5, wheat/soybean, common vetch/soybean, and double purpose triticale/soybean; and 6, wheat/soybean, double purpose white oat/soybean, and double purpose wheat/soybean. Corn showed highest returned energy in comparison to the other grain crops, and to winter and summer annual pastures. Of the winter cover crops and green manure species evaluated, field pea was the most efficient in energy conversion. Systems 1, 2, and 4, from 2003 to 2008, had the most efficient energy balance.
  • Authors:
    • Costa, O.
    • Ziech, M.
    • Nornberg, J.
    • Bermudes, R.
    • Viegas, J.
    • Skonieski, F.
    • Meinerz, G.
  • Source: REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE
  • Volume: 40
  • Issue: 3
  • Year: 2011
  • Summary: The objective of this work was to evaluate the influence of species intercropped with ryegrass on the botanical and structural composition and the nutritional values of pastures in an agroecological transition system. It was evaluated ryegrass ( Lolium multiflorum Lam.) intercropped with black oats ( Avena strigosa Schreb.), white clover ( Trifolium repens L.) and forage peanut ( Arachis pintoi Krapov. & Gregory). It was used a complete random design with three treatments and three repetitions. The first grazing was done 21 days after emergence of the plants on the pastures with ryegrass and black oats and ryegrass and forage peanuts and 28 days after emergence on the pasture of ryegrass+white clover. The second grazing, on the pasture with ryegras+black oats, occurred 30 days after the first one, whereas on the other pastures, grazing occurred 37 days later. The rates of dry matter (DM) accumulation, from the beginning of period of exclusion until maximal production of dry matter were: 77.7; 75.0 and 71.3 kg/ha/day of DM for the pastures intercropped with white clover, forage peanut and black cover, respectively. Leaf/culm ratio until second grazing, was high on all pastures. Reduction on contents of crude protein according to exclusion days on ryegrass+black oat pasture is lower than on pastures of ryegrass intercropped with white clover or forage peanut.