• Authors:
    • Watanabe, T.
    • Tsuruta, H.
    • Akiyama, H.
  • Source: Chemosphere - Global Change Science
  • Volume: 2
  • Issue: 3
  • Year: 2000
  • Summary: Three nitrogen chemical fertilizers were applied to soil - controlled-release urea (CU), a mixture of ammonium sulfate and urea with nitrification inhibitor (AM), and a mixture of ammonium sulfate and urea with no nitrification inhibitor (UA). N2O and NO fluxes from an Andosol soil in Japan were measured six times a day for three months with an automated flux monitoring system in lysimeters. The total amount of nitrogen applied was 20 g N m-2. The total N2O emissions from CU, AM and UA were 1.90, 12.7, and 16.4 mg N m-2, respectively. The total NO emissions from CU, AM and UA were 231, 152, and 238 mg N m-2, respectively. The total NO emission was 12-15 times higher than the total N2O emission. High peaks in N2O and NO emissions from UA occurred for one month after the basal fertilizer application. The N2O emissions from CU and AM during the peak period were 50% of those from UA, and the NO emissions were less than 50% of those from UA. After the peak period, the N2O and NO emissions from CU were the highest for two months. A negative correlation was found between the flux ratio of NO-N to N2O-N and the water-filled pore space. A diel pattern with increased N2O and NO fluxes during the day and with decreased fluxes during the night was observed.
  • Authors:
    • Alberta Agriculture and Rural Development
  • Year: 2000
  • Authors:
    • Knezevic, S. Z.
    • Leeson, J. Y.
    • Thomas, A. G.
    • Acker, R. C. van
    • Frick, B. L.
  • Source: Canadian Journal of Plant Science
  • Volume: 80
  • Issue: 4
  • Year: 2000
  • Summary: In 1997, a weed survey was conducted during July and August in fields of wheat, barley, oat, canola [rape] and flax in Manitoba, Canada. Field selection was based on a stratified-random sampling methodology using ecodistricts as strata. Species in the Poaceae family were most commonly observed in the survey, followed by species in the Polygonaceae, Asteraceae and Brassicaceae families. The six most abundant weed species were green foxtail ( Setaria viridis), wild oats ( Avena fatua), wild buckwheat ( Polygonum convolvulus) [ Fallopia convolvulus], Canada thistle ( Cirsium arvense), red-root pigweed ( Amaranthus retroflexus) and wild mustard ( Sinapis arvensis). The survey highlighted significant differences between ecoregions and between crops in residual weed infestations. The weed community in the Boreal Transition ecoregion was dominated by seven species, whereas fields in the Aspen Parkland and Lake Manitoba Plain ecoregions were dominated by two species and the Interlake Plain ecoregion was dominated by only one species. Although significant differences were found between the weed communities in crops, they were not as great as differences between ecoregions. The Manitoba residual weed community in 1997 was very similar to that reported for 1978-81 and 1986, suggesting that the same species should remain a focus for weed management.
  • Authors:
    • Bertholdsson, N. O.
  • Source: Sveriges Utsädesförenings Tidskrift
  • Volume: 110
  • Issue: 4
  • Year: 2000
  • Summary: The use of hydroponic techniques to measure the response to stress by cereals is discussed with reference to studies on drought, low N inputs and crop weed competition with barley, wheat, oats, triticale and rape.
  • Authors:
    • Ray, D. E.
    • Slinsky, S. E.
    • Graham, R. L.
    • Becker, D. A.
    • de la Torre Ugarte, D.
    • Turhollow, A.
    • Perlack, R. L.
    • Walsh, M. E.
  • Year: 1999
  • Authors:
    • Merrill, S. D.
    • Tanaka, D. L.
    • Black, A. L.
    • Halvorson, A. D.
    • Krupinsky, J. M.
  • Source: Agronomy Journal
  • Volume: 91
  • Issue: 4
  • Year: 1999
  • Summary: Sunflower (Helianthus annuus L.) is a warm-season, intermediate water-use crop that can add diversity to dryland crop rotations, Reduced tillage systems may Enhance sunflower yield in intensive cropping systems. A 12-year study was conducted to determine how sunflower cultivars of early and medium maturity respond to tillage system (conventional-till, CT; minimum-till, MT; no-till, NT) and N fertilization (34, 67, and 101 kg N ha(-1)) within a dryland spring wheat (Triticum aestivum L.)-winter wheat-sunflower rotation. Averaged across N rates, cultivars, and years, sunflower seed yields were greater with MT (1550 kg ha(-1)) than with NT (1460 kg ha(-1)) and CT (1450 kg ha(-1)). Increasing N rate above 34 kg N ha-L generally increased gain yield, but varied from year to year. The tillage X N interaction showed that the highest seed yields were obtained with NT (1638 kg ha(-1)) and MT (1614 kg ha(-1)) at 101 kg N ha(-1). Total plant-available water (TPAW) of 500 mm did not result in increased sunflower yields over those with 350 to 500 mm TPAW. Yield differences between cultivar maturity classes varied from year to gear and with tillage and N level. At the lowest N rate, weeds were more problematic in NT than in CT and MT plots. More N fertilizer may be needed with NT to optimize sunflower yields than with CT and MT, because of less residual soil NO3-N with NT. Results indicate that producers in the northern Great Plains can use sunflower successfully in annual a cropping systems, particularly if MT and NT are used with adequate N fertilization.
  • Authors:
    • Peters, M.
    • House, R.
    • Lewandrowski, J.
    • McDowell, H.
  • Source: Agricultural Outlook
  • Year: 1999
  • Authors:
    • Walters, D. T.
    • Kessavalou, A.
  • Source: Agronomy Journal
  • Volume: 91
  • Issue: 4
  • Year: 1999
  • Summary: Use of a winter rye (Secale cereale L.) cover crop following soybean [Glyceine max (L.) Merr.] has been shown to reduce the soil erosion potential in a corn (Zea mays L.)-soybean rotation system, but little is known about the effect of rye on residual soil NO(3)-N (RSN). An irrigated field study was conducted for 4 yr on a Sharpsburg silty clay loam (fine, smectitic, mesic Typic Argiudoll) to compare crop rotation and winter rye cover crop following soybean effects on RSN under several tillage practices and N fertilization rates. Treatments each gear were (i) tillage: no-till or disk; (ii) rotation: corn following soybean/rye (Cbr) or soybean/rye following corn (BRc), corn following soybean (Cb) or soybean following corn (Bc), and corn following corn (Cc); and (iii) N rate: 0, 100, and 300 kg N ha(-1) (applied to corn). Rye in the Cbr/BRc rotation was planted in the fall following soybean harvest and chemically killed in the spring of the following year prior to corn planting. Each spring, before tillage and N application, RSN was determined to a depth of 1.5 m, at 30-cm intervals. The net spring-to-spring change in RSN between subsequent spring seasons was computed for each plot, and annual aboveground N uptake for rye, corn, and soybean were determined. Rye, rotation, N rate, and tillage significantly influenced RSN in the top 1.5 m of soil. The presence of rye (BRc) reduced total spring RSN between 18 and 33% prior to corn planting in 2 of the 3 yr, compared with the no-rye system (Bc), as rye immobilized from 42 to 48 kg N ha(-1) in aboveground dry matter. Recycling of N in high-yielding rye cover crop residues led to an increase in RSN accumulation after corn in the succeeding spring. Up to 277 kg RSN ha(-1) accumulated at high rates of N following corn in the Cbr rotation, compared with 67 kg RSN ha(-1) in the no-rye system (Cb) in 1992. Regardless of the presence of rye, significant accumulation of RSN occurred following corn in the rotation sequence, while RSN declined following soybean. Less RSN was found in the top 1.5 m of soil under continuous than rotation corn, and disking tended to increase NO(3)(-) accumulation in rotation systems at high rates of N application. Although RSN declines following a rye cover crop, the ready release of this immobilized N suggests that some N credit should be given, reducing N recommendation for corn following winter rye cover, to minimize potential NO(3)(-) leaching under corn-soybean/rye rotations.
  • Authors:
    • Tanni, R.
    • Pietola, L.
  • Source: Agricultural and Food Science in Finland
  • Volume: 8
  • Issue: 4/5
  • Year: 1999
  • Summary: The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC [chlormequat]), fodder barley (etephon/mepiquat) an oilseed rape (etephone) in crop rotation was studied in 1993-96 on loamy clay soil. Carry over effect of the N fertilization rates (0-180 kg/ha) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120-150 kg/ha) was not affected by PGRs. The seed and N yields of oilseed rape were improved frequently by the recommended use of PGR. The yield of oats increased in 1995-96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60-90 kg/ha), independent of PGRs. According to soil mineral N contents, N leaching risk was significant (15-35 kg/ha) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents.
  • Authors:
    • Williams, J. R.
    • Kramer, L. A.
    • Gassman, P. W.
    • Chung, S. W.
    • Gu, R.
  • Source: Journal of Environmental Quality
  • Volume: 28
  • Issue: 3
  • Year: 1999
  • Summary: The Erosion Productivity Impact Calculator (EPIC) model was validated using long-term data collected for two southwest Iowa watersheds in the Deep Loess Soil Region, which have been cropped in continuous corn (Zea mays L.) under two different tillage systems (conventional tillage vs. ridge-till). The annual hydrologic balance was calibrated for both watersheds during 1988 to 1994 by adjusting the runoff curve numbers and residue effects on soil evaporation. Model validation was performed for 1976 to 1987, using both summary statistics (means or medians) and parametric and nonparametric statistical tests. The errors between the 12-yr predicted and observed means or medians were <10% for nearly all of the hydrologic and environmental indicators, with the major exception of a nearly 44% overprediction of the N surface runoff loss for Watershed 2. The predicted N leaching rates, N losses in surface runoff, and sediment loss for the two watersheds clearly showed that EPIC was able to simulate the long-term impacts of tillage and residue cover on these processes. However, the results also revealed weaknesses in the model's ability to replicate year-to-year variability, with r2 values generally <50% and relatively weak goodness-of-fit statistics for some processes. This was due in part to simulating the watersheds in a homogeneous manner, which ignored complexities such as slope variation. Overall, the results show that EPIC was able to replicate the long-term relative differences between the two tillage systems and that the model is a useful tool for simulating different tillage systems in the region.