- Authors:
- Van Eerd, L. L.
- Vyn, R. J.
- Robinson, D. E.
- O'Reilly, K. A.
- Source: Weed Technology
- Volume: 25
- Issue: 3
- Year: 2011
- Summary: The effectiveness of cover crops as an alternative weed control strategy should be assessed as the demand for food and fiber grown under sustainable agricultural practices increases. This study assessed the effect of fall cover crops on weed populations in the fall and spring prior to sweet corn planting and during sweet corn growth. The experiment was a split-plot design in a pea cover-cover crop-sweet corn rotation with fall cover crop type as the main plot factor and presence or absence of weeds in the sweet corn as the split-plot factor. The cover crop treatments were a control with no cover crop (no-cover), oat, cereal rye (rye), oilseed radish (OSR), and oilseed radish with rye (OSR+rye). In the fall, at Ridgetown, weed biomass in the OSR treatments was 29 and 59 g m(-2) lower than in the no-cover and the cereal treatments, respectively. In the spring, OSR+rye and rye reduced weed biomass, density, and richness below the levels observed in the control at Bothwell. At Ridgetown in the spring, cover crops had no effect on weed populations. During the sweet corn season, weed populations and sweet corn yields were generally unaffected by the cover crops, provided OSR did not set viable seed. All cover crop treatments were as profitable as or more profitable than the no-cover treatment. At Bothwell profit margins were highest for oat at almost Can$600 ha(-1) higher than the no-cover treatment. At Ridgetown, compared with the no-cover treatment, OSR and OSR+rye profit margins were between Can$1,250 and Can$1,350 ha(-1) and between Can$682 and Can$835 ha(-1), respectively. Therefore, provided that OSR does not set viable seed, the cover crops tested are feasible and profitable options to include in sweet corn production and provide weed-suppression benefits.
- Authors:
- Roskamp, G. K.
- Glassman, K. R.
- Ortiz-Ribbing, L. M.
- Hallett, S. G.
- Source: Plant Disease
- Volume: 95
- Issue: 4
- Year: 2011
- Summary: Common waterhemp ( Amaranthus rudis) and pigweeds ( Amaranthus spp.) are troublesome weeds in many cropping systems and have evolved resistance to several herbicides. Field trials to further develop Microsphaeropsis amaranthi and Phomopsis amaranthicola as bioherbicides for control of waterhemp and pigweeds were conducted to test the effectiveness of these organisms in irrigated and nonirrigated pumpkin and soybean plots over 2 years at three locations in western Illinois. The bioherbicide was applied with lecithin and vegetable oil at 187 liters ha -1 in 2008 and 374 liters ha -1 in 2009. Treatments included spore suspensions of M. amaranthi and P. amaranthicola alone, a mixture of both organisms, and sequential treatments of the organisms with halosulfuron-methyl (Sandea Herbicide) in pumpkin or glyphosate (Roundup Original Max Herbicide) in soybean. Bioherbicide effectiveness was estimated at approximately 7 and 14 days after treatment, as disease incidence, disease severity, percent weed control, and weed biomass reduction. Significant reductions in weed biomass occurred in treatments with one or both of the fungal organisms, and potential exists to tank mix M. amaranthi with halosulfuron-methyl. Leaf surface moisture and air temperatures following application may account for inconsistencies in field results between year and locations. These fungal organisms show potential as bioherbicides for weeds in the genus Amaranthus.
- Authors:
- Bonta, J. V.
- Owens, L. B.
- Shipitalo, M. J.
- Rogers, S.
- Source: Journal of Environmental Quality
- Volume: 40
- Issue: 1
- Year: 2011
- Summary: Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.
- Authors:
- Shipitalo, M. J.
- Owens, L. B.
- Source: Agriculture, Ecosystems & Environment
- Volume: 141
- Issue: 1-2
- Year: 2011
- Summary: With the current emphasis on the role of carbon in the environment, agricultural systems and their impacts on the carbon cycle are important parts of the overall issue. Organic carbon lost to streams and rivers can promote bacterial production and microbial respiration of CO(2) to the atmosphere. Although pastures and grasslands are major land uses in the humid U.S., row crop agriculture has received most of the carbon research focus. The objective of this study at the North Appalachian Experimental Watershed near Coshocton, Ohio, was to assess organic carbon transported from a pasture system, particularly on a runoff event basis. A beef cow-calf herd rotationally grazed a paddock during the growing season and was fed hay in this paddock during the dormant season (November-April). Surface runoff and sediment loss was measured and sampled throughout the year from the small watershed in the paddock. Most of the sediment samples were collected during the dormant season. With continuous winter occupancy, the percent vegetative cover was often = 10 kg ha(-1) from the watershed in the winter feeding area. The largest 6 events carried nearly 50% of the total sediment and sediment-attached C lost during this period. Annual losses of sediment and sediment-C varied considerably but averaged 2642 and 140 kg ha(-1), respectively. There was no significant correlation between the amount of sediment transported during individual events and the C concentration on the associated sediment. The pasture sediments have a C enrichment ratio of 1.2-1.5 compared with the 0-2.5 cm soil layer. Pasture sediment-C concentrations were >2x the C concentrations on sediments from nearby row crop watersheds. Published by Elsevier B.V.
- Authors:
- Nonnecke, G. R.
- Portz, D. N.
- Source: HortScience
- Volume: 46
- Issue: 10
- Year: 2011
- Summary: Yield of strawberry grown continuously on the same site often declines over time as a result of proliferation of weed seeds and pathogenic organisms in the soil. Plots were established and maintained in seven different cover crops and as continuous strawberry or continuous tillage for 10 years (1996 to 2005) in a site that was previously in strawberry production for 10 years (1986 to 1995). Cover crops included blackeyed Susan (Rudbeckia hirta L.), sorghum Sudangrass [Sorghum bicolor (L.) Moench], marigold (Tagetes credo L.), big bluestem (Andropogon gerardii Vitman), perennial ryegrass (Lolium permute L.), switchgrass (Panicum virgatum L.), and Indiangrass [Sorghastrum nutans (L.) Nash]. Treatments were ended in 2005 and plots were planted with 'Honeoye' strawberry in a matted row. Effectiveness of soil pretreatments in reducing weed populations and enhancing strawberry production was evaluated for four growing seasons by quantifying weed growth by type and biomass and strawberry plant density and yield. The results indicate that matted-row strawberry production plots that were either in continuous tillage or established in S. bicolor, P. virgatum, or A. gerardii before planting strawberry had lower weed biomass and greater strawberry plant establishment and yield than plots established in L. permute or R. hirta or that had supported continuous strawberry production.
- Authors:
- Nichols, R. L.
- Kelton, J. A.
- Culpepper, S. A.
- Balkcom, K. S.
- Price, A. J.
- Schomberg, H.
- Source: Journal of Soil and Water Conservation
- Volume: 66
- Issue: 4
- Year: 2011
- Summary: Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. When consistently practiced as a soil and crop management system, it greatly reduces soil erosion and is recognized for the potential to improve soil quality and water conservation and plant available water. Adoption of conservation tillage increased dramatically with the advent of transgenic, glyphosate-resistant crops that permitted in-season, over-the-top use of glyphosate (N-[phosphonomethyl] glycine), a broad-spectrum herbicide with very low mammalian toxicity and minimal potential for off-site movement in soil or water. Glyphosate-resistant crops are currently grown on approximately 70 million ha (173 million ac) worldwide. The United States has the most hectares (45 million ha [99 million ac]) of transgenic, glyphosate-resistant cultivars and the greatest number of hectares (46 million ha [114 million ac]) in conservation tillage. The practice of conservation tillage is now threatened by the emergence and rapid spread of glyphosate-resistant Palmer amaranth (Amaranthus palmeri [S.]Wats.), one of several amaranths commonly called pigweeds. First identified in Georgia, it now has been reported in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. Another closely related dioecious amaranth, or pigweed, common waterhemp (Amaranthus rudis Sauer), has also developed resistance to glyphosate in Illinois, Iowa, Minnesota, and. Missouri. Hundreds of thousands of conservation tillage hectares, some currently under USDA Natural Resources Conservation Service conservation program contracts, are at risk of being converted to higher-intensity tillage systems due to the inability to control these glyphosate-resistant Amaranthus species in conservation tillage systems using traditional technologies. The decline of conservation tillage is inevitable without the development and rapid adoption of integrated, effective weed control strategies. Traditional and alternative weed control strategies, such as the utilization of crop and herbicide rotation and integration of high residue cereal cover crops, are necessary in order to sustain conservation tillage practices.
- Authors:
- Gillard, C. L.
- Sikkema, P. H.
- Pynenburg, G. M.
- Source: Crop Protection
- Volume: 30
- Issue: 3
- Year: 2011
- Summary: Two common production constraints of dry bean (Phaseolus vulgaris) in Ontario are annual weeds and anthracnose (caused by Colletotrichum lindemuthianum). Dry bean is not considered a competitive crop and weed interference can result in substantial yield losses, while anthracnose is considered one of the most devastating diseases in dry bean production. A study conducted in Ontario Canada, examined the effect of two herbicide programs on weed management, thiamethoxam insecticide treatment on plant enhancement and three fungicide programs on anthracnose development in a navy bean cv. 'OAC Rex'. The premium herbicide program (s-metolachlor + imazethapyr) reduced percent weed ground cover relative to the economic herbicide program (trifluralin) in five of six locations. Thiamethoxam increased emergence and vigour at only one location, which contradicts reported benefits of thiamethoxam on plant health. The herbicide or thiamethoxam treatments did not affect anthracnose disease severity, visible seed quality, net yield or economic return. The fungicide seed treatment was often superior to the untreated control, for a number of the parameters measured. The application date of the foliar fungicide, relative to the onset of disease, varied between site-years. This dramatically influenced the fungicide's effectiveness. Foliar fungicides increased seed quality and net economic return compared to the control when applied prior to disease development. The combination of fungicide seed treatment followed by a foliar fungicide provided the largest reduction in anthracnose severity. (c) 2010 Elsevier Ltd. All rights reserved.
- Authors:
- Thorp, K. R.
- Malone, R. W.
- Helmers, M. J.
- Qi, Z.
- Source: Transactions of the ASABE
- Volume: 54
- Issue: 5
- Year: 2011
- Summary: Planting winter cover crops into corn-soybean rotations is a potential approach for reducing subsurface drainage and nitrate-nitrogen (NO(3)-N.) loss. However, the long-term impact of this practice needs investigation. We evaluated the RZWQM2 model against comprehensive field data (2005-2009) in Iowa and used this model to study the long-term (1970-2009) hydrologic and nitrogen cycling effects of a winter cover crop within a corn-soybean rotation. The calibrated RZWQM2 model satisfactorily simulated crop yield, biomass, and N uptake with percent error (PE) within +/- 15% and relative root mean square error (RRMSE) 0.50, ratio of RMSE to standard error (RSR)
- Authors:
- Pederson, C. H.
- Christianson, R. D.
- Helmers, M. J.
- Qi, Z.
- Source: Journal of Environmental Quality
- Volume: 40
- Issue: 5
- Year: 2011
- Summary: Nitrate-nitrogen (NO(3)-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO(3)-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn (Zea mays L.) (C) and soybean [Glycine max (L.) Merr.] (S); (ii) winter rye (Secale cereale L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover (Trifolium ambiguum M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass (Dactylis glomerata L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha(-1), respectively. Effect of land covers on subsurface drainage was not significant. The NO(3)-N loss was significantly lower for kC and PF than C and S treatments (p
- Authors:
- Kaleita, A. L.
- Helmers, M. J.
- Qi, Z.
- Source: Agricultural Water Management
- Volume: 98
- Issue: 4
- Year: 2011
- Summary: Modification of land cover systems is being studied in subsurface drained Iowa croplands due to their potential benefits in increasing soil water and nitrogen depletion thus reducing drainage and NO(3)-N loss in the spring period. The objective of this study was to evaluate the impacts of modified land covers on soil water dynamics. In each individual year, modified land covers including winter rye-corn (rC), winter rye-soybean (rS), kura clover as a living mulch for corn (kC), and perennial forage (PF), as well as conventional corn (C) and soybean (S), were grown in subsurface drained plots in north-central Iowa. Results showed that subsurface drainage was not reduced under modified land covers in comparison to conventional corn and soybean. Soil water storage (SWS) was significantly reduced by PF treatments during the whole growing seasons and by kC during May through July when compared to the cropping system with corn or soybean only (p