• Authors:
    • Lal, R.
    • Jarecki, M. K.
  • Source: Soil Science
  • Volume: 171
  • Issue: 3
  • Year: 2006
  • Summary: Accelerating soil erosion, leading to loss of the surface soil, is a common occurrence in croplands on undulating terrain. Yet the impact of erosion and reclamation measure on emission of greenhouse gases (GHG) is not known. Three predominant GHG emitted from cropland are as follows: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The most abundant GHG is CO2, but N2O and CH4 are also important, with global warming potentials (GWP) of 297 and 23, respectively. The objectives of this study were to evaluate the effect of imitated soil erosion on gaseous emission, to determine the effects of application of wheat (Triticum aestivum) residue mulch and swine manure and soybean (Glycine max) residue compost as soil-restorative measures on fluxes of CO2, N2O, and CH4 from uncropped, undisturbed, and desurfaced plots, and to determine relations between GHG fluxes and air and soil temperature, precipitation, and soil-moisture regimes. The microplot (2 X 2 m) experiment was established in 2002 on a Crosby silt loam (fine mixed Aeric Ochraqudalf ) near South Charleston, Ohio. The experimental design included two soils: undisturbed and desurfaced soil in which the top 0-cm to 20-cm layer was mechanically removed to simulate severe soil erosion. There were three cover treatments: bare soil, wheat mulch at the rate of 8 Mg dry matter ha-1 y-1, and compost made from swine manure and soybean residues at the rate of 20 Mg dry matter ha-1 y-1. All plots received mineral fertilizer at the rate of 100 kg N ha-1. Desurfacing decreased soil moisture, increased temperature, decreased daily and annual CO2 fluxes (1.05 vs. 1.59 g CO2-C m-2 d-1), and increased N2O fluxes (3.58 vs. 1.81 mg N2O-N m-2 d-1). Daily CO2 and annual fluxes were higher from compost than mulch plots. The lowest daily CO2 flux was measured from bare plots. The daily N2O fluxes significantly increased after compost application but were more significantly affected by rainfall events. CH4 fluxes were characterized by a high variability; however, more uptake was observed in compost (-0.41 kg ha-1 y-1) than in mulch (0.60 kg ha-1 y-1) and bare plots (2.75 kg ha-1 y-1). Daily CO2 fluxes were positively correlated with soil (r = 0.82) and air temperatures (r = 0.84) and negatively correlated with soil-moisture content (r = -0.53). Daily N2O fluxes were highly correlated with precipitation (r = 0.88). Fluxes of CO2 and N2O were mutually correlated (r = 0.56), but CH4 fluxes were not correlated with temperature, moisture, precipitation, or fluxes of other GHG. Computed GWP was higher in compost-covered plots than in mulched and bare plots. Estimation of fluxes of GHG indicates that N2O accounts for 13% to 28% and CH4 for -0.5% to 5% of the total emission. Therefore, a completed assessment of flux of GHG must be based on measurement of all three gases (i.e., CO2, N2O, and CH4).
  • Authors:
    • Bullock, D. G.
    • Hao, X.
    • Robertson, G. P.
    • Kravchenko, A. N.
  • Source: Agronomy Journal
  • Volume: 98
  • Issue: 6
  • Year: 2006
  • Summary: Lack of information about the spatial variability of soil C in different management systems limits accurate extrapolation of C sequestration findings to large scales. The objectives of this study were to: (i) describe and quantify variability of total C in three management systems, chisel-plow (CT) and no-till (NT) with conventional chemical inputs and a chisel-plow organic management practice with cover crops (CT-cover) 15 yr after conversion from conventional management; (ii) assess the strengths of spatial correlation in the three studied systems; and (iii) evaluate contributions of topography and texture to the overall total C variability and its spatial components. The data were collected at 12 60 by 60 m plots at the Long Term Ecological Research site, Kellogg Biological Station, MI. The data consisted of elevation measurements taken on a 2 by 5 m grid and a total of 1160 measurements of total C, sand, silt, and clay contents taken from the 0- to 5-cm depth. Overall variability of total C in NT was more than four times greater than in CT, and in CT-cover the variability was more than two times greater than CT. Spatial correlation of total C was the strongest in NT, followed by CT-cover, and then by CT. Stronger spatial structures in NT and CT-cover were found to form in response to topographical and texture gradients. Effects of texture were largely associated with topographical effects; however, even when topography was controlled for, texture still substantially contributed to explaining total C variability.
  • Authors:
    • Smucker, A. J. M.
    • Snap, S. S.
    • Robertson, G. P.
    • Kravchenko, A. N.
  • Source: Agronomy Journal
  • Volume: 98
  • Issue: 3
  • Year: 2006
  • Summary: Changes in soil C as a result of changes in management are relatively slow, and several years of experimentation are needed before differences in management practices can be detected using traditional statistical procedures such as randomized complete block design (RCBD). Using spatial analyses (SA) that take into account spatial variability between plots has a potential for faster and more efficient detection of soil C differences. We hypothesize that for variables with strong spatial continuity, such as total soil C, accurate spatial variability assessment can be obtained even in relatively small experiments. Thus, SA can significantly improve the statistical efficiency of even these experiments. The objective of this study is to test this hypothesis by comparing performances of RCBD analysis and SA for simulated small-sized experiments where soil C is the response variable. Total soil C data collected from 11 field sites at the Long-Term Ecological Research (LTER) experiment in Michigan were used as an input for simulated experiments. Performance of SA depended on the strength of spatial correlation in soil C and was found to be related to topographical diversity of the experimental sites. In the sites with more diverse topography and stronger spatial correlation of soil C the SA produced lower standard errors for treatment means than those of the RCBD analysis (8 out of 11 sites). In two sites with the flattest topography and weak spatial correlation, SA did not have advantages over RCBD.
  • Authors:
    • Zentner, R.
    • Campbell, C. A.
    • Zhong, Z.
    • Lemke, R. L.
  • Source: Agronomy Journal
  • Volume: 99
  • Issue: 6
  • Year: 2006
  • Summary: The atmospheric buildup of greenhouse gases (GHGs) is a serious environmental issue. Globally, agricultural activities are an important source of anthropogenic GHGs, contributing [~]20% of the annual atmospheric increase. Management choices largely determine if agricultural soils will be a source, a sink, or will be neutral with respect to GHG net flux. The proportion of agricultural land that is seeded to pulse crops in the Northern Great Plains (NGP) region of North America has been increasing rapidly over the past decade. Introducing pulses into cereal-based cropping systems could influence the net GHG balance of those systems because pulse crops are thought to stimulate soil-emitted N2O, have different pesticide and fertilizer requirements, and the quality and quantity of their residues vary substantially compared with cereal crops. In this paper we briefly review the available literature, and discuss the potential impact of pulse crops on the net flux of CO2, N2O, and CH4 from soils, and the CO2 emissions associated with energy inputs for cropping systems in the NGP. We also calculate net GHG balances for two example sites. Estimating the final GHG outcome of introducing pulses into cereal-based cropping systems is still uncertain, but current information suggests that replacing a cereal with a pulse crop will likely result in no change or a small but positive net GHG benefit (lower emissions to the atmosphere) for crop rotations in the NGP region.
  • Authors:
    • Perez, A.
    • Ali, M.
    • Pollack, S.
    • Lucier, G.
  • Year: 2006
  • Summary: The U.S. fruit and vegetable industry accounts for nearly a third of U.S. crop cash receipts and a fifth of U.S. agricultural exports. A variety of challenges face this complex and diverse industry in both domestic and international markets, ranging from immigration reform and its effect on labor availability to international competitiveness. The national debate on diet and health frequently focuses on the nutritional role of fruit and vegetables, and a continued emphasis on the benefits of eating produce may provide opportunities to the industry. In the domestic market, Americans are eating more fruit and vegetables than they did 20 years ago, but consumption remains below recommended levels. In terms of per capita consumption expressed on a fresh-weight basis, the top five vegetables are potatoes, tomatoes, lettuce, sweet corn, and onions while the top five fruit include oranges, grapes (including wine grapes), apples, bananas, and pineapples. The industry also faces a variety of trade-related issues, including competition with imports. During 2002-04, imports accounted for 21 percent of domestic consumption of all fresh and processed fruit and vegetables, up from 16 percent during 1992-94.
  • Authors:
    • Wander, M.
    • Marriott, E. E.
  • Source: Soil Biology and Biochemistry
  • Volume: 38
  • Issue: 7
  • Year: 2006
  • Authors:
    • Wander, M. M.
    • Marriott, E. E.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 3
  • Year: 2006
  • Summary: Even though organic management practices are intended to enhance soil performance by altering the quantity or quality of soil organic matter (SOM), there is no consensus on how to measure or manage SOM status. We investigated the veracity of common perceptions about SOM quantity in organically and conventionally managed soils by evaluating the relative responsiveness to organic management of particulate organic matter (POM) and the Illinois Soil N Test (IL-N), which has been proposed as a direct measure of labile N. Soil samples were obtained from nine farming systems trials in the USA. Soil organic C (SOC), total N (TN), POM-C, POM-N, and IL-N were compared among manure + legume-based organic, legume-based organic, and conventional farming systems. The organic systems had higher SOC and TN concentrations than conventional systems whether or not manure was applied. The POM-C, POM-N, and IL-N concentrations did not differ between manure + legume- and legume-based organic systems. The amount of N recovered in POM and IL-N was similar. Organic management enriched soil POM-C and -N by 30 to 40% relative to the conventional control and this level of enrichment was two to four times greater than that in any other fraction. The IL-N fraction was not a good measure of labile N as it was less enriched than POM and included recalcitrant components. This is evidenced by the strong correlation between IL-N and SOC, TN, climate and textural characteristics. Particulate organic matter provided clearer evidence of SOM and labile N accrual under organic management. Direct links between POM status and soil N supply and physical condition are being pursued to help farmers manage biologically based fertility.
  • Authors:
    • McLauchlan, K.
  • Source: Ecosystems
  • Volume: 9
  • Issue: 8
  • Year: 2006
  • Summary: Since the domestication of plant and animal species around 10,000 years ago, cultivation and animal husbandry have been major components of global change. Agricultural activities such as tillage, fertilization, and biomass alteration lead to fundamental changes in the pools and fluxes of carbon (C), nitrogen (N), and phosphorus (P) that originally existed in native ecosystems. Land is often taken out of agricultural production for economic, social, or biological reasons, and the ability to predict the biogeochemical trajectory of this land is important to our understanding of ecosystem development and our projections of food security for the future. Tillage generally decreases soil organic matter (SOM) due to erosion and disruption of the physical, biochemical, and chemical mechanisms of SOM stabilization, but SOM can generally reaccumulate after the cessation of cultivation. The use of organic amendments causes increases in SOM on agricultural fields that can last for centuries to millennia after the termination of applications, although the locations that provide the organic amendments are concurrently depleted. The legacy of agriculture is therefore highly variable on decadal to millennial time scales and depends on the specific management practices that are followed during the agricultural period. State factors such as climate and parent material (particularly clay content and mineralogy) modify ecosystem processes such that they may be useful predictors of rates of postagricultural biogeochemical change. In addition to accurate biogeochemical budgets of postagricultural systems, ecosystem models that more explicitly incorporate mechanisms of SOM loss and formation with agricultural practices will be helpful. Developing this predictive capacity will aid in ecological restoration efforts and improve the management of modern agroecosystems as demands on agriculture become more pressing.
  • Authors:
    • Bourbonniere, R. A.
    • Warner, B. G.
    • Robarts, R. D.
    • Murkin, H. R.
    • McDougal, R. L.
    • Olness, A.
    • Gleason, R. A.
    • Euliss, N. H. Jr.
  • Source: Science of the Total Environment
  • Volume: 361
  • Issue: 1-3
  • Year: 2006
  • Summary: We evaluated the potential of prairie wetlands in North America as carbon sinks. Agricultural conversion has resulted in the average loss of 10.1 Mg ha(-1) of soil organic carbon on over 16 million ha of wetlands in this region. Wetland restoration has potential to sequester 378 Tg of organic carbon over a 10-year period. Wetlands can sequester over twice the organic carbon as no-till cropland on only about 17% of the total land area in the region. We estimate that wetland restoration has potential to offset 2.4% of the annual fossil CO2 emission reported for North America in 1990. (c) 2005 Elsevier B.V. All rights reserved.
  • Authors:
    • Robertson, G. P.
    • Parr, S.
    • Loecke, T. D.
    • Grandy, A. S.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: No-till cropping can increase soil C stocks and aggregation but patterns of long-term changes in N2O emissions, soil N availability, and crop yields still need to be resolved. We measured soil C accumulation, aggregation, soil water, N2O emissions, soil inorganic N, and crop yields in till and no-till corn-soybean-wheat rotations between 1989 and 2002 in southwestern Michigan and investigated whether tillage effects varied over time or by crop. Mean annual NO3- concentrations in no-till were significantly less than in conventional till in three of six corn years and during one year of wheat production. Yields were similar in each system for all 14 years but three, during which yields were higher in no-till, indicating that lower soil NO3- concentrations did not result in lower yields. Carbon accumulated in no-till soils at a rate of 26 g C m-2 yr-1 over 12 years at the 0- to 5-cm soil depth. Average nitrous oxide emissions were similar in till (3.27 {+/-} 0.52 g N ha d-1) and no-till (3.63 {+/-} 0.53 g N ha d-1) systems and were sufficient to offset 56 to 61% of the reduction in CO2 equivalents associated with no-till C sequestration. After controlling for rotation and environmental effects by normalizing treatment differences between till and no-till systems we found no significant trends in soil N, N2O emissions, or yields through time. In our sandy loam soils, no-till cropping enhances C storage, aggregation, and associated environmental processes with no significant ecological or yield tradeoffs.