- Authors:
- Source: Renewable Agriculture and Food Systems
- Volume: 28
- Issue: 2
- Year: 2013
- Summary: Ecosystem functions and services provided by soils depend on land use and management. The objective of this article is to review and synthesize relevant information on the impacts of no-till (NT) management of croplands on ecosystem functions and services. Sustainable management of soil through NT involves: (i) replacing what is removed, (ii) restoring what has been degraded, and (iii) minimizing on-site and off-site effects. Despite its merits, NT is adopted on merely similar to 9% of the 1.5 billion ha of global arable land area. Soil's ecosystem services depend on the natural capital (soil organic matter and clay contents, soil depth and water retention capacity) and its management. Soil management in various agro-ecosystems to enhance food production has some trade-offs/disservices (i. e., decline in biodiversity, accelerated erosion and non-point source pollution), which must be minimized by further developing agricultural complexity to mimic natural ecosystems. However, adoption of NT accentuates many ecosystem services: carbon sequestration, biodiversity, elemental cycling, and resilience to natural and anthropogenic perturbations, all of which can affect food security. Links exist among diverse ecosystem services, such that managing one can adversely impact others. For example, increasing agronomic production can reduce biodiversity and deplete soil organic carbon (SOC), harvesting crop residues for cellulosic ethanol can reduce SOC, etc. Undervaluing ecosystem services can jeopardize finite soil resources and aggravate disservices. Adoption of recommended management practices can be promoted through payments for ecosystem services by a market-based approach so that risks of disservices and negative costs can be reduced either through direct economic incentives or as performance payments.
- Authors:
- Mihailovic, D. T.
- Eitzinger, J.
- Lalic, B.
- Thaler, S.
- Jancic, M.
- Source: The Journal of Agricultural Science
- Volume: 151
- Issue: 6
- Year: 2013
- Summary: One of the main problems in estimating the effects of climate change on crops is the identification of those factors limiting crop growth in a selected environment. Previous studies have indicated that considering simple trends of either precipitation or temperature for the coming decades is insufficient for estimating the climate impact on yield in the future. One reason for this insufficiency is that changes in weather extremes or seasonal weather patterns may have marked impacts. The present study focuses on identifying agroclimatic parameters that can identify the effects of climate change and variability on winter wheat yield change in the Pannonian lowland. The impacts of soil type under past and future climates as well as the effect of different CO2 concentrations on yield formation are also considered. The Vojvodina region was chosen for this case study because it is a representative part of the Pannonian lowland. Projections of the future climate were taken from the HadCM3, ECHAM5 and NCAR-PCM climate models with the SRES-A2 scenario for greenhouse gas (GHG) emissions for the 2040 and 2080 integration periods. To calibrate and validate the Met&Roll weather generator, four-variable weather data series (for six main climatic stations in the Vojvodina region) were analysed. The grain yield of winter wheat was calculated using the SIRIUS wheat model for three different CO2 concentrations (330, 550 and 1050 ppm) dependent on the integration period. To estimate the effects of climatic parameters on crop yield, the correlation coefficient between crop yield and agroclimatic indices was calculated using the AGRICLIM software. The present study shows that for all soil types, the following indices are the most important for winter wheat yields in this region: (i) the number of days with water and temperature stress, (ii) the accumulated precipitation, (iii) the actual evapotranspiration (ETa) and (iv) the water deficit during the growing season. The high positive correlations between yield and the ETa, accumulated precipitation and the ratio between the ETa and reference evapotranspiration (ETr) for the April-June period indicate that water is and will remain a major limiting factor for growing winter wheat in this region. Indices referring to negative impact on yield are (i) the number of days with a water deficit for the April-June period and (ii) the number of days with maximum temperature above 25 degrees C (summer days) and the number of days with maximum temperature above 30 degrees C (tropical days) in May and June. These indices can be seen as indicators of extreme weather events such as drought and heat waves.
- Authors:
- Armstrong, R.
- Norton, R.
- Chen, D.
- Lam, S. K.
- Mosier, A. R.
- Source: The Journal of Agricultural Science
- Volume: 151
- Issue: 2
- Year: 2013
- Summary: The effect of elevated carbon dioxide (CO2) concentration on greenhouse gas (GHG) emission from semi-arid cropping systems is poorly understood. Closed static chambers were used to measure the fluxes of nitrous oxide (N2O), CO2 and methane (CH4) from a spring wheat (Triticum aestivum L. cv. Yitpi) crop-soil system at the Australian grains free-air carbon dioxide enrichment (AGFACE) facility at Horsham in southern Australia in 2009. The targeted atmospheric CO2 concentrations (hereafter CO2 concentration is abbreviated as [CO2]) were 390 (ambient) and 550 (elevated) mu mol/mol for both rainfed and supplementary irrigated treatments. Gas measurements were conducted at five key growth stages of wheat. Elevated [CO2] increased the emission of N2O and CO2 by 108 and 29%, respectively, with changes being greater during the wheat vegetative stage. Supplementary irrigation reduced N2O emission by 36%, suggesting that N2O was reduced to N-2 in the denitrification process. Irrigation increased CO2 flux by 26% at ambient [CO2] but not at elevated [CO2], and had no impact on CH4 flux. The present results suggest that under future atmospheric [CO2], agricultural GHG emissions at the vegetative stage may be higher and irrigation is likely to reduce the emissions from semi-arid cropping systems.
- Authors:
- Mosier, A. R.
- Chen, D.
- Lam, S. K.
- Roush, R.
- Source: Scientific Reports
- Volume: 3
- Issue: July
- Year: 2013
- Summary: Concerns about increasing concentrations of greenhouse gases in the atmosphere, primarily carbon dioxide (CO2), have raised worldwide interest in the potential of agricultural soils to be carbon (C) sinks. In Australia, studies that have quantified the effects of improved management practices in croplands on soil C have generally been inconclusive and contradictory for different soil depths and durations of the management changes. We therefore quantitatively synthesised the results of Australian studies using meta-analytic techniques to assess the technical and economic feasibility of increasing the soil C stock by improved management practices. Our results indicate that the potential of these improved practices to store C is limited to the surface 0-10 cm of soil and diminishes with time. None of these widely adopted practices is currently financially attractive under Australia's new legislation known as the Carbon Farming Initiative.
- Authors:
- Tzilivakis, J.
- Warner, D. J.
- Green, A.
- Lewis, K. A.
- Source: International Journal of Agricultural Sustainability
- Volume: 11
- Issue: 2
- Year: 2013
- Summary: The agricultural sector contributes 9% towards total UK greenhouse gas emissions and so may offer significant potential as a sector to help meet national and international emission reduction targets. In order to help farmers manage their emissions and to encourage more sustainable farming, several carbon accounting tools are now available. This article describes a short study that selected five suitable tools and compared their performance on nine European arable farms, concentrating on the crop production components, to determine how useful they are for assisting in the development of site-specific mitigation strategies and how well they would perform within farm assurance or benchmarking schemes. The results were mixed, with some tools better designed for identifying mitigation opportunities than others. The results also showed that, quantitatively, the results are highly variable between tools and depended on the selected functional unit, this being highly important if the wider aspects of sustainability such as food security are to be considered. However, there is statistical consistency across the tools regarding the ranking order of the farms in terms of their emissions.
- Authors:
- Wang, S.
- Wang, J.
- Yang, F.
- Zhao, L.
- Cao, X.
- Li, F.
- Source: Soil Science and Plant Nutrition
- Volume: 59
- Issue: 5
- Year: 2013
- Summary: A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500 degrees C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4-40% and 62-98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22-69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.
- Authors:
- Shi, W.
- Bowman, D.
- Hu, F.
- Li, X.
- Source: Applied Soil Ecology
- Volume: 67
- Issue: May
- Year: 2013
- Summary: Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g(-1) soil at 60% WFPS and from 76 to 8842 ngN g(-1) soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation similar to 110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r= 0.91, P2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O-2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems. (C) 2013 Elsevier B.V. All rights reserved.
- Authors:
- Source: Global Change Biology
- Volume: 19
- Issue: 2
- Year: 2013
- Summary: Increasing reactive nitrogen (N) input has been recognized as one of the important factors influencing climate system through affecting the uptake and emission of greenhouse gases (GHG). However, the magnitude and spatiotemporal variations of N-induced GHG fluxes at regional and global scales remain far from certain. Here we selected China as an example, and used a coupled biogeochemical model in conjunction with spatially explicit data sets (including climate, atmospheric CO2, O-3, N deposition, land use, and land cover changes, and N fertilizer application) to simulate the concurrent impacts of increasing atmospheric and fertilized N inputs on balance of three major GHGs (CO2, CH4, and N2O). Our simulations showed that these two N enrichment sources in China decreased global warming potential (GWP) through stimulating CO2 sink and suppressing CH4 emission. However, direct N2O emission was estimated to offset 39% of N-induced carbon (C) benefit, with a net GWP of three GHGs averaging -376.3 +/- 146.4 Tg CO2 eq yr(-1) (the standard deviation is interannual variability of GWP) during 2000-2008. The chemical N fertilizer uses were estimated to increase GWP by 45.6 +/- 34.3 Tg CO2 eq yr(-1) in the same period, and C sink was offset by 136%. The largest C sink offset ratio due to increasing N input was found in Southeast and Central mainland of China, where rapid industrial development and intensively managed crop system are located. Although exposed to the rapidly increasing N deposition, most of the natural vegetation covers were still showing decreasing GWP. However, due to extensive overuse of N fertilizer, China's cropland was found to show the least negative GWP, or even positive GWP in recent decade. From both scientific and policy perspectives, it is essential to incorporate multiple GHGs into a coupled biogeochemical framework for fully assessing N impacts on climate changes.
- Authors:
- Shang, Z. H.
- Chen, X. P.
- Pan, J. L.
- Dai, W. A.
- Wang, X. M.
- Ma, L. N.
- Guo, R. Y.
- Source: Chinese Journal of Eco-Agriculture
- Volume: 21
- Issue: 11
- Year: 2013
- Summary: Soil carbon and nitrogen in vegetable fields are the core elements of soil quality and environmental pollution. The decrease of soil C/N ratio of vegetable fields under greenhouse conditions causes an imbalance in soil carbon and nitrogen content. An effective way of adjusting soil carbon and nitrogen conditions in vegetable fields has been by improving soil quality and decreasing environmental pollution. Furthermore, there has been little research on soil carbon and nitrogen mineralization under greenhouse conditions in the Tibetan region. After transformations of alpine meadows and farmlands into solar greenhouse vegetable fields, there was the need to study the characteristics and processes of soil mineralization. In this study therefore, carbon and nitrogen mineralization in soils of alpine grassland, farmland and greenhouse (1-year, 5-year) were analyzed in an indoor incubation experiment. The results showed that soil carbon mineralization in different soil types mainly occurred during the first seven days (0-7 d) after treatment. Soil carbon mineralization was higher under alpine grassland than in farmland and 5-year greenhouse conditions ( P0.05). This was attributed to soil nutrient and soil microbial environment sensitivity to temperature. Soil CO 2-C accumulation in farmland soil was higher than in alpine grassland soil. It was also higher in alpine grassland soil than in the 1-year greenhouse and 5-year greenhouse soils. However, the differences in soil organic carbon mineralization and accumulation among alpine grassland, farmland, 1-year greenhouse and 5-year greenhouse soil conditions were not significant ( P>0.05) at 28 days after treatment. Soil nitrogen mineralization mainly happened in different soil types during the first three days (3 d) after treatment. With delayed incubation, the main process of soil nitrogen mineralization was nitrogen fixation. Soil inorganic nitrogen content in alpine grassland, farmland, 1-year greenhouse and 5-year greenhouse soils at 28 days after incubation were 29.04%, 75.94%, 66.86% and 65.70% of that at 0 day, respectively. The results showed that soil nitrogen mineralization capacity of alpine grassland soil was stronger than farmland, 1-year greenhouse and 5-year greenhouse soils. Soil nitrogen mineralization capacity of farmland was weaker than alpine grassland, 1-year greenhouse and 5-year greenhouse. Also soil nitrogen mineralization capacities of 1-year greenhouse and 5-year greenhouse were similar. Moreover, soil mineralization processes were similar among different soil conditions.
- Authors:
- Marschner, P.
- Khan, K. S.
- Malik, M. A.
- Fayyaz-ul, H.
- Source: Journal of soil science and plant nutrition
- Volume: 13
- Issue: 4
- Year: 2013
- Summary: A 72-day greenhouse pot experiment was conducted with a sandy loam or a silt loam soil to examine the effects of farmyard manure (FYM), poultry litter (PL) and biogenic waste compost (BWC) at 10 g dw kg(-1) soil on microbial biomass and activity and growth and nutrient uptake by wheat. Soil samples were collected at days 0, 14, 28, 42, 56 and 72 after planting. Growth and nutrient uptake by wheat were determined on day 72. All three amendments increased microbial biomass C, N and P, dehydrogenase activity, plant growth and nutrient uptake with a greater effect by FYM and PL than by BWC. All amendments increased microbial biomass C, N and P and enzyme activity particularly on day 0. These microbial parameters decreased after day 0 indicating microbial biomass turnover. All amendments increased plant growth and nutrient uptake. It is concluded that organicamendments can stimulate microbial growth and nutrient uptake as well as plant growth and nutrient uptake. Microbes can increase plant nutrient availability by nutrient mobilisation but also because nutrients taken up by the microbial biomass initially could become available to plants when the microbial biomass turns over as the easily available C is depleted.