- Authors:
- Monaco, S.
- Sacco, D.
- Zavattaro, L.
- Grignani, C.
- Source: European Journal of Agronomy
- Volume: 26
- Issue: 4
- Year: 2007
- Summary: Nitrogen (N) and carbon (C) surplus can be used as indicators of an agroecosystems' ability to maintain soil fertility. Maize is the key crop of intensive forage systems in northern Italy, and large amounts of manure are often supplied to this crop. Different maize-based cropping systems and manure managements were compared in this paper. The following were assessed, using the results of an 11-year experiment: crop production and N uptakes; C and N surpluses; soil C and N contents. The treatments were maize for silage (Ms), maize for grain (Mg), double annual crop rotation maize-Italian ryegrass (Mr), and rotation maize-grass ley (Ml). Five fertilization management systems were adopted: 0N control, and bovine slurry and farmyard manure supplied at two levels, ranging from 215 to 385 kg ha-1 of total N. The dry-matter production of Mr was significantly higher than those of the other systems. The response of maize to fertilization was similar in all the cropping systems, except for Mr, for which the crop showed a high reactivity to N input at both fertilizer levels. Soil reserves were rapidly consumed in the unfertilized treatment of Mr, whereas the high productivity potential of this cropping system was exerted in fertilized plots. The introduction of a ley in rotation with maize reduced the system's DM production, due to the low yield potential of grass compared to that of maize, reduced the system response to fertilization, and diminished the exploitation of organic N at high fertilization rates. Cumulated N surplus caused an enrichment of the soil N pool size: 43% of excess N was retained by the soil. The relationship between the cumulated C surplus and the soil C pool size indicated that 26-27% was retained by the soil. Crop residues of the Mg system were less effective in building up the soil C pool than other C sources. Both slurry and farmyard manure exerted a positive effect on the soil C and N retention. When farmyard manure was used, 18% of C and 45% of surplus N were incorporated into the soil organic matter (SOM). Slurry also built up the SOM content, resulting in 9% of C and 24% of N surplus.
- Authors:
- Wright, J.
- Herrick, J.
- Fredrickson, E.
- Bestelmeyer, B.
- Brown, J.
- Skaggs, R.
- Peters, D. P. C.
- Havstad, K. M.
- Source: Ecological Economics
- Volume: 64
- Issue: 2
- Year: 2007
- Summary: The over 300 million ha of public and private rangelands in the United States are characterized by low and variable precipitation, nutrient-poor soils, and high spatial and temporal variability in plant production. This land type has provided a variety of goods and services, with the provisioning of food and fiber dominating through much of the 20th century. More recently, food production from a rangeland-based livestock industry is often pressured for a variety of reasons, including poor economic returns, increased regulations, an aging rural population, and increasingly diverse interests of land owners. A shift to other provisioning, regulating, cultural, and supporting services is occurring with important implications for carbon sequestration, biodiversity, and conservation incentives. There are numerous goods and services possible from rangelands that can supply societal demands such as clean water and a safe food supply. The use of ecologically-based principles of land management remains at the core of the ability of private land owners and public land managers to provide these existing and emerging services. We suggest that expectations need to be based on a thorough understanding of the diverse potentials of these lands and their inherent limits. A critical provisioning service to rangelands will be management practices that either maintain ecological functions or that restore functions to systems that have been substantially degraded over past decades. With proper incentives and economic benefits, rangelands, in the U.S. or globally, can be expected to provide these historical and more unique goods and services in a sustainable fashion, albeit in different proportions than in the past.
- Authors:
- Year: 2007
- Summary: Chicago Climate Exchange (CCX) is the world's first and North America's only active voluntary, legally binding integrated trading system to reduce emissions of all six greenhouse gases (GHGs), with Offset Projects worldwide. CCX employs independent verification and has been trading GHG emission reductions since 2003. CCX Members that cannot reduce their own emissions can purchase credits from those who make extra emission cuts or from verified Offset Projects. CCX issues tradable Carbon Financial Instrument (CFI) contracts to owners or aggregators of eligible projects on the basis of sequestration, destruction or displacement of GHG emissions. Eligible projects include: agricultural methane, landfill methane, coal mine methane, agricultural and rangeland soil carbon, forestry and renewable energy.
- Authors:
- King, A. J.
- Cooper, J. E.
- Strong, W. M.
- Dalal, R. C.
- Source: Australian Journal of Experimental Agriculture
- Volume: 47
- Issue: 7
- Year: 2007
- Summary: No-tillage (NT) practice, where straw is retained on the soil surface, is increasingly being used in cereal cropping systems in Australia and elsewhere. Compared to conventional tillage (CT), where straw is mixed with the ploughed soil, NT practice may reduce straw decomposition, increase nitrogen immobilisation and increase organic carbon in the soil. This study examined N-15-labelled wheat straw ( stubble) decomposition in four treatments (NT v. CT, with N rates of 0 and 75 kg/ha. year) and assessed the tillage and fertiliser N effects on mineral N and organic C and N levels over a 10-year period in a field experiment. NT practice decreased the rate of straw decomposition while fertiliser N application increased it. However, there was no tillage practice x N interaction. The mean residence time of the straw N in soil was more than twice as long under the NT (1.2 years) as compared to the CT practice (0.5 years). In comparison, differences in mean residence time due to N fertiliser treatment were small. However, tillage had generally very little effect on either the amounts of mineral N at sowing or soil organic C (and N) over the study period. While application of N fertiliser increased mineral N, it had very little effect on organic C over a 10-year period. Relatively rapid decomposition of straw and short mean residence time of straw N in a Vertisol is likely to have very little long-term effect on N immobilisation and organic C level in an annual cereal cropping system in a subtropical, semiarid environment. Thus, changing the tillage practice from CT to NT may not necessitate additional N requirement unless use is made of additional stored water in the soil or mineral N loss due to increased leaching is compensated for in N supply to crops.
- Authors:
- Ali, M. K.
- Paustian, K.
- Capalbo, S. M.
- Antle, J. M.
- Source: Climatic Change
- Volume: 80
- Issue: 1-2
- Year: 2007
- Summary: The purpose of this paper is to develop and apply a new method to assess economic potential for agricultural greenhouse gas mitigation. This method uses secondary economic data and conventional econometric production models, combined with estimates of soil carbon stocks derived from biophysical simulation models such as Century, to construct economic simulation models that estimate economic potential for carbon sequestration. Using this method, simulations for the central United States show that reduction in fallow and conservation tillage adoption in the wheat-pasture system could generate up to about 1.7 million MgC/yr, whereas increased adoption of conservation tillage in the corn-soy-feed system could generate up to about 6.2 million MgC/yr at a price of $200/MgC. About half of this potential could be achieved at relatively low carbon prices (in the range of $50 per ton). The model used in this analysis produced estimates of economic potential for soil carbon sequestration potential similar to results produced by much more data-intensive, field-scale models, suggesting that this simpler, aggregate modeling approach can produce credible estimates of soil carbon sequestration potential. Carbon rates were found to vary substantially over the region. Using average carbon rates for the region, the model produced carbon sequestration estimates within about 10% of those based on county-specific carbon rates, suggesting that effects of spatial heterogeneity in carbon rates may average out over a large region such as the central United States. However, the average carbon rates produced large prediction errors for individual counties, showing that estimates of carbon rates do need to be matched to the spatial scale of analysis. Transaction costs were found to have a potentially important impact on soil carbon supply at low carbon prices, particularly when carbon rates are low, but this effect diminishes as carbon prices increase.
- Authors:
- Mielniczuk, J.
- Vieira, F.
- Dieckow, J.
- Bayer, C.
- Zanatta, J.
- Source: Soil & Tillage Research
- Volume: 94
- Issue: 2
- Year: 2007
- Summary: Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat+vetch/maize+cowpea (OV/MC)] and N fertilization [0 kg N ha -1 year -1 (0 N) and 180 kg N ha -1 year -1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0-5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0-20 cm layer varied from 0.09 to 0.34 Mg ha -1 year -1 in CT and from 0.19 to 0.65 Mg ha -1 year-1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.
- Authors:
- Myers, L.
- Sherwood, J.
- Edelson, J.
- Damicone, J.
- Motes, J.
- Source: Plant Disease
- Volume: 91
- Issue: 5
- Year: 2007
- Summary: In five field trials over 3 years, control of aphid-transmitted, nonpersistent virus diseases on pumpkin, caused mostly by the potyviruses Watermelon mosaic virus (WMV) and Papaya ringspot virus type-W (PRSV-W), was achieved by intercropping with grain sorghum, as opposed to clean tillage. Reductions in disease incidence ranged from 43 to 96% ( P≤0.05). Surrounding pumpkin plots with borders of peanut, soybean, or corn was not effective. Borders of grain sorghum were effective, but disease control was generally less than for the intercrop treatment. Intercropping soybean and peanut with pumpkin reduced disease incidence by 27 to 60% ( P≤0.05), but disease control generally was less than for grain sorghum. Peak periods of alate aphid immigration generally preceded virus disease outbreaks by 7 to 14 days. However, alate landing rates, as measured in green tile traps, did not differ among treatments. Marketable yield was not increased by the intercrop treatments, and yield was reduced by up to 50% for the intercrop treatment with grain sorghum in two trials. The use of grass-selective herbicide applied along pumpkin rows, reduced seeding rates of the intercrops, or mowing did not alleviate the adverse effects of competition between pumpkin and the grain sorghum intercrop on yield.
- Authors:
- Hons, F.
- Wright, A.
- Dou, F.
- Source: Soil & Tillage Research
- Volume: 94
- Issue: 2
- Year: 2007
- Summary: Crop management practices have potential to enhance subsoil C and N sequestration in the southern U.S., but effects may vary with tillage regime and cropping sequence. The objective of this study was to determine the impacts of tillage and soyabean cropping sequence on the depth distribution of soil organic C (SOC), dissolved organic C (DOC), and total N after 20 years of treatment imposition for a silty clay loam soil in central Texas. A continuous soyabean monoculture, a wheat-soybean doublecrop, and a sorghum-wheat-soybean rotation were established under both conventional (CT) and no tillage (NT). Soil was sampled after soyabean harvest and sectioned into 0-5, 5-15, 15-30, 30-55, 55-80, and 80-105 cm depth intervals. Both tillage and cropping intensity influenced C and N dynamics in surface and subsurface soils. No tillage increased SOC, DOC, and total N compared to CT to a 30 cm depth for continuous soyabean, but to 55 cm depths for the more intensive sorghum-wheat-soybean rotation and wheat-soybean doublecrop. Averaged from 0 to 105 cm, NT increased SOC, DOC, and total N by 32, 22, and 34%, respectively, compared to CT. Intensive cropping increased SOC and total N at depths to 55 cm compared to continuous soyabean, regardless of tillage regime. Continuous soyabean had significantly lower SOC (5.3 g kg -1) than sorghum-wheat-soybean (6.4 g kg -1) and wheat-soybean (6.1 g kg -1), and 19% lower total N than other cropping sequences. Dissolved organic C was also significantly higher for sorghum-wheat-soybean (139 mg C kg -1) than wheat-soybean (92 mg C kg -1) and continuous soyabean (100 mg C kg -1). The depth distribution of SOC, DOC, and total N indicated treatment effects below the maximum tillage depth (25 cm), suggesting that roots, or translocation of dissolved organic matter from surface soils, contributed to higher soil organic matter levels under NT than CT in subsurface soils. High-intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels, demonstrating potential for C and N sequestration for subsurface soils in the southern U.S.
- Authors:
- Silva, A. C.
- Duarte, A. P.
- Deuber, R.
- Source: PLANTA DANINHA
- Volume: 25
- Issue: 2
- Year: 2007
- Summary: A weed infestation survey was performed in 20 second maize crop areas in 1997 and in 40 areas in 1998 and 1999 after soyabean planting in the Medio Paranapanema Region, Sao Paulo, Brazil. The survey was conducted in the counties of Assis, Campos Novos, Candido Mota, Cruzalia, Florinea, Maracai, Palmital, Pedrinhas Paulista and Platina. When the maize reached the grain filling stage, the crop weeds were evaluated by zigzag walking through the areas starting from different points to represent the whole area. The crops were classified in three types, according to the system applied: no-tillage, conventional system with disc plowing, and second maize crop in the soyabean straw only. Infestation level and occurring weed species were evaluated in each crop. The weed control systems adopted were also considered, according to the herbicides applied. The most important weed species occurring in the areas were: Cenchrus echinatus, Bidens pilosa, Euphorbia heterophylla, Raphanus sativus, Digitaria horizontalis, Commelina benghalensis, Amaranthus sp., Achyrocline satureioides, Sinapis arvensis, Sida sp., Glycine max, Avena strigosa [ Avena nuda], Eleusine indica and Sorghum halepense. The results showed a strong infestation increase of C. echinatus, which turned out to be the most important weed species in the area evaluated. R. sativus was also important and showed an expressive increase from 1997 to 1999. Weed infestations were higher in the conventional system areas, showing that this system is inferior to the others, concerning weed control. The chemical weed control most used was the mixture of (atrazine+oil) plus 2,4-D, followed by (atrazine+oil) and atrazine alone. No weed control was used in 22% of the crops, which were the most infested. The infestation level varied from year to year for the different weed control systems, depending on climate conditions.
- Authors:
- Borghi, E.
- Crusciol, C.
- Mateus, G.
- Source: Acta Scientiarum Agronomy
- Volume: 29
- Issue: 4
- Year: 2007
- Summary: The effects of cover plants on the performance of annual crops under no-tillage systems are not well defined yet. A field trial was carried out on a Rhodic Kandiudalf soil in Botucatu, state of Sao Paulo, Brazil, aiming to evaluate the effect of the amount of Gigante guinea sorghum straw on soybean nutrient uptake and its consequent performance of grain yield in no-tillage area. The experimental design was developed in randomized blocks with four replications. The treatments consisted of 6.1, 7.1, 19.5, 26.7, 28.1 e 30.2 ton ha -1 of guinea sorghum straw. The increase of straw provided increment of N and P plant levels until the amount of 25.0 and 17.5 ton ha -1, respectively. Thus, the highest soybean grain yields reported in soils under no-tillage systems might be related to the proper water and nutrient uptakes due to higher soil moisture availability.