- Authors:
- Ibrikci, H.
- Grando, S.
- Ceccarelli, S.
- Masri, S.
- Ryan, J.
- Source: Journal of Plant Nutrition
- Volume: 31
- Issue: 2
- Year: 2008
- Summary: Barley is traditionally grown in the Mediterranean region as a dryland crop, invariably under drought-stressed conditions and often without inputs such as fertilizer. Following research that demonstrated the benefits of fertilization, even under less-than-favourable rainfall condition, fertilizer use on cereals has increased dramatically in the past few decades in countries of West Asia-North Africa. With developments in breeding new barley cultivars for higher yield, combined with disease resistance and environmental adaptability, it is crucial to assess the extent to which such cultivars respond to fertilizer inputs as this may affect aspects of a breeding strategy, particularly the choice of germplasm for adaptation in any particular environment. Thus, we assessed the yield potential of 30 barley cultivars with a range of germplasm types, including new cultivars and landraces, in a greenhouse in two soil types with and without adequate nitrogen and phosphorus fertilizer, i.e., low and high fertility. By comparison with the unfertilized low fertility soils, the fertilizer treatment increased yield parameters by about 10-fold. However, the rankings of some cultivars changed markedly with fertilization; some increased, others showed poor responses and decreased relatively, and two performed well with and without fertilizer. Based on the differential responses at the initial screening stage in the greenhouse, it is possible to identify lines or cultivars that are highly responsive to fertilizers and to incorporate such germplasm for further development to produce high-yielding cultivars for commercial adoption by farmers.
- Authors:
- Fletcher, P. S.
- Kennedy, A. C.
- Pannkuk, C. D.
- McCool, D. K.
- Source: Soil & Tillage Research
- Volume: 101
- Issue: 1-2
- Year: 2008
- Summary: Burn/low-till management of winter wheat (Triticum aestivum) is being practiced by some growers in the higher rainfall areas of the Pacific Northwestern Winter Wheat Region of the US. Residue burning eliminates the numerous seedbed tillage operations that are normally required to reduce residues and control weeds and diseases in continuous winter wheat production. The detrimental effects of burn and till systems on soil erosion are well documented. However, there is little or no data on the effects of burning with no-till or low-till annual cropping on either erosion or soil quality. A 3-year field study comparing winter season erosion resulting from burn/low-till (BLT) seeded winter wheat following winter wheat and conventionally managed (CM) winter wheat following various crops was completed in 1997. Results indicate soil loss from the BLT fields was not significantly different from that of the CM fields with various crops preceding winter wheat. For the BLT fields, soil loss was as closely related to soil disturbance (number of tillage operations) as to the amount of surface residue. When residue and crop cover did not differ with the number of tillage operations, an increased number of tillage operations after burning loosened the soil and resulted in greater soil loss. No adverse effects on soil loss or soil quality from using the BLT with one or two-pass seeding of winter wheat following winter wheat were found in this study. The results have implications for harvesting wheat stubble as a source of biomass, or as an alternative technique for initiating conversion from a conventional tillage to a no-till seeding system, without high initial investment in new seeding equipment.
- Authors:
- Montemurro, F.
- Maiorana, M.
- Convertini, G.
- Ferri, D.
- Source: Agronomy for Sustainable Development
- Volume: 27
- Issue: 2
- Year: 2007
- Summary: The application of conventional agricultural practices, e. g. deep soil tillage and repeated, plentiful mineral fertilisation, can lead to a progressive deterioration of soil fertility, especially in Mediterranean environments characterised by scanty rains and high summer temperatures. As a consequence, to maintain high levels of both crop productivity and soil organic matter and to improve some soil properties, a reduction of agricultural inputs and a greater supply of organic material are needed. In the light of these considerations, we carried out a two-year field experiment in Southern Italy to determine the effects of reduced soil tillage and municipal solid waste compost application on growth parameters, production and quality of sugar beet crops, and on both soil chemical characteristics and mineral nitrogen deficit. Two soil tillage depths were compared: conventional tillage, till 40-45 cm and shallow tillage, at 15-20 cm. Within each soil tillage, the following N-fertilising strategies were tested: (1) mineral fertilisation, with 100 kg N ha(-1); (2) organic fertilisation with municipal solid waste compost at 100 kg N ha(-1); (3) mixed fertilisation, with 50% of organic N as municipal solid waste compost, and 50% of mineral N; and (4) slow-release organic-mineral N fertiliser, at 100 kg N ha(-1). All these treatments were compared with a lower level of mineral fertiliser at 50 kg N ha(-1), and with an unfertilised control. Our findings show first the absence of a significant difference in root and sucrose yields between reduced tillage and deep tillage; as shown by roots (36.02 t ha(-1)) and sucrose (3.41 t ha(-1)) yields for reduced tillage and 35.76 and 3.51 t ha(-1), respectively, for the deepest tillage. Secondly, among the N treatments, the mixed organic-mineral N fertilisation gave productions statistically not diffierent from mineral N fertilisation; as shown by root yields (36.38 versus 36.40 tha(-1)) and sucrose yields ( 3.56 versus 3.65 t ha(-1)). Third, the mixed organic-mineral N induced a reduction of 13.2% in a-amino N content by comparison with the mineral treatment of 100 kg N ha-1. Fourth, our results showed that the applications of the municipal solid waste compost increased the extracted and the humified organic carbon by +27.7 and +25.4%, compared with the mineral fertiliser, and did not raise the content of heavy metals. These findings highlighted that in Southern Italy it is sustainable to adopt alternative sugar beet production, safeguarding crops' quantitative and qualitative performance, decreasing the production costs and using the natural resources better.
- Authors:
- Carbonell, R.
- Perea, F.
- González, P.
- Rodríguez-Lizana, A.
- Ordóñez-Fernández, R.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 79
- Issue: 3
- Year: 2007
- Summary: With the aim of assessing the benefits of crop remains left on the soil surface, a study was carried out on the decomposition and characteristics of residue deposited on a clay soil in southern Spain during the agricultural seasons of 2001/02, 2002/03 and 2003/04, in which a legume-cereal-sunflower rotation was followed. Each of the residues studied possessed a characteristic justifying its inclusion in the rotation. The legume residue (Pisum sativum L. cv. Ideal) supplied the highest amount of nitrogen to the soil since, throughout its decomposition cycle, it lost 76.6% of its initial content in nitrogen, compared to the 48 and 56% of N released by wheat residues (Triticum durum L. cv. Amilcar) and sunflower (Helianthus annus L. cv. Sanbro), respectively. At the beginning of its decomposition cycle, the wheat residue had the lowest mass, and gave the most cover, with values of 65%, which was 8.6 and 20.2% more than the cover estimated for the pea and sunflower residues, respectively. The sunflower residue lasted longest, only losing 18% of its initial cover over 109 days of decomposition, compared to 47% for wheat and 53% for pea. The amount of carbon released was similar for the three residues and was around 500 kg ha(-1). The straw decomposition rates under our conditions indicate that the residue of the most common crops in the area under dry farming makes protection possible during the intercrop period.
- Authors:
- Source: Fourrages
- Issue: 190
- Year: 2007
- Summary: The natural conditions in Galice and northern Spain are favourable for the production of forage, compared to the rest of the country. Agriculture in the country has undergone deep restructurations for the last 50 years, especially on the dairy farms. From 1960s onwards, the acreages of grass-clover leys and of forage maize have been constantly increasing, in parallel with an increasing milk production. The proportion of milk produced from forage crops have remained at 20 to 25%, and a particular effort should be made to reach the goal of 40%. In order to overcome water shortage during summer, the farmers make silage with their spring cuts, use lucerne and purchased feeds, and irrigate at a small scale. The few trials made show that irrigated pastures can increase the average yearly production by 40-45%. Since the water resources are scarce, and must be distributed with other economic activities, there should be no large development of irrigation. To overcome the water shortage during summer, it would seem more realistic to have recourse to more intensive rotations (2 crops per year), in which a crop better adapted to high temperatures and to dry spells would take over the leys. This intensified dry-land system would increase the yearly production by from 50 to 82%.
- Authors:
- McGregor, A.
- Slattery, B.
- Ugalde, D.
- Brungs, A.
- Kaebernick, M.
- Source: Soil & Tillage Research
- Volume: 97
- Issue: 2
- Year: 2007
- Authors:
- Barlow, E. W. R.
- Whetton, P. H.
- Webb, L. B.
- Source: Australian Journal of Grape and Wine Research
- Volume: 13
- Issue: 3
- Year: 2007
- Authors:
- Olofsson,J.
- Hickler,T.
- Orloff,Steve B.
- Klonsky,Karen M.
- Livingston,Pete
- Source: University of California Cooperative Extension Publication
- Year: 2007
- Authors:
- Valentini, R.
- Tubaf, Z.
- Sutton, M.
- Manca, G.
- Stefani, P.
- Skiba, U.
- Rees, R. M.
- Baronti, S.
- Raschi, A.
- Neftel, A.
- Nagy, Z.
- Martin, C.
- Kasper, G.
- Jones, M.
- Horvath, L.
- Hensen, A.
- Fuhrer, J.
- Flechard, C.
- Domingues, R.
- Czobel, S.
- Clifton-Brown, J.
- Ceschia, E.
- Campbell, C.
- Amman, C.
- Ambus, P.
- Pilegaard, K.
- Allard, V.
- Soussana, J. F.
- Source: Agriculture, Ecosystems & Environment
- Volume: 121
- Issue: 1-2
- Year: 2007
- Summary: The full greenhouse gas balance of nine contrasted grassland sites covering a major climatic gradient over Europe was measured during two complete years. The sites include a wide range of management regimes (rotational grazing, continuous grazing and mowing), the three main types of managed grasslands across Europe (sown, intensive permanent and semi-natural grassland) and contrasted nitrogen fertilizer supplies. At all sites, the net ecosystem exchange (NEE) of CO2 was assessed using the eddy covariance technique. N2O emissions were monitored using various techniques (GC-cuvette systems, automated chambers and tunable diode laser) and CH4 emissions resulting from enteric fermentation of the grazing cattle were measured in situ at four sites using the SF6 tracer method. Averaged over the two measurement years, net ecosystem exchange (NEE) results show that the nine grassland plots displayed a net sink for atmospheric CO2 of -240 +/- 70 g C m(-2) year(-1) (mean confidence interval at p > 0.95). Because of organic C exports (from cut and removed herbage) being usually greater than C imports (from manure spreading), the average C storage (net biome productivity, NBP) in the grassland plots was estimated at -104 +/- 73 g cm(-2) year(-1) that is 43% of the atmospheric CO2 sink. On average of the 2 years, the grassland plots displayed annual N2O and CH4 (from enteric fermentation by grazing cattle) emissions, in CO2-C equivalents, of 14 +/- 4.7 and 32 +/- 6.8 g CO2-C equiv. m(-2) year(-1), respectively. Hence, when expressed in CO2-C equivalents, emissions of N2O and CH4 resulted in a 19% offset of the NEE sink activity. An attributed GHG balance has been calculated by subtracting from the NBP: (i) N2O and CH4 emissions occurring within the grassland plot and (ii) off-site emissions of CO2 and CH4 as a result of the digestion and enteric fermentation by cattle of the cut herbage. On average of the nine sites, the attributed GHG balance was not significantly different from zero (-85 +/- 77 g CO2-C equiv. m(-2) year(-1)).
- Authors:
- Mitchell, J. P.
- Horwath, W. R.
- Veenstra, J. J.
- Source: Soil Science Society of America Journal
- Volume: 71
- Issue: 2
- Year: 2007
- Summary: Conservation tillage (CT) and cover cropping (CC) are agricultural practices that may provide solutions to address water and air quality issues arising from intensive agricultural practices. This study investigated how CT and CC affect soil organic matter dynamics in a cotton(Gossypium hirsutum L.)-tomato (Lycopersicon esculentum Mill.) rotation in California's San Joaquin Valley. There were four treatments: conservation tillage, no cover crop (CTNO); conservation tillage with cover crop (CTCC); standard tillage, no cover crop (STNO); and standard tillage with cover crop (STCC). After 5 yr, the top 30 cm of soil in CTCC had an increase of 4500 kg C ha(-1), compared with an increase of 3800 kg C hat in STCC from initial soil C content in 1999. To enhance our understanding of C dynamics in CT systems, we pulse-labeled cotton with (CO2)-C-13 in the field and followed the decomposition of both the roots and the shoots through three physical fractions: light fraction (LF), which tends to turnover quickly, and two relatively stable C pools-intraaggregate LF (iLF) and mineral-associated carbon (mC). Soil under CT treatments retained more of the cotton-residue-derived C in LF and iLF than ST 3 mo after placement in the field. These differences disappeared after 1 yr, however, with no discernable differences between CT and ST regardless of CC. In California's Mediterranean climate, CT alone does not accumulate or stabilize more C than ST in tomato-cotton rotations, and the addition of cover crop biomass is more important than tillage reduction for total soil C accumulation.