- Authors:
- McDonald, A. J.
- Bishnoi, D. K.
- Kumar, A.
- Jat, M. L.
- Majumdar, K.
- Sapkota, T. B.
- Pampolino, M.
- Source: Field Crops Research
- Volume: 155
- Year: 2014
- Summary: In the high-yielding wheat production systems in Northwest (NW) Indo-Gangetic Plains of India, intensive tillage operations and blanket fertilizer recommendations have led to high production costs, decreased nutrient use efficiency, lower profits and significant environmental externalities. No-tillage (NT) has been increasingly adopted in this region to reduce costs and increase input use efficiency. But, optimal nutrient management practices for NT based wheat production are still poorly understood. Opportunities exist to further enhance the yield, profitability, and resource use efficiency of NT wheat through site-specific nutrient management (SSNM). On-farm trials were conducted in seven districts of Haryana, India for two consecutive years (2010-11 and 2011-12) to evaluate three different approaches to SSNM based on recommendations from the Nutrient Expert (R) (NE) decision support system in NT and conventional tillage (CT) based wheat production systems. Performance of NE based recommendations was evaluated against current state recommendations and farmers' practices for nutrient management. Three SSNM treatments based on NE based recommendation were (1) 'NE80:20' with 80% N applied at planting and 20% at second irrigation (2) 'NE33:33:33' with N split as 33% basal, 33% at Crown Root Initiation (CRI) and 33% at second irrigation; and (3) 'NE80:GS' with N split as 80% basal and further application of N based on optical sensor (Green Seeker (TM))-guided recommendations. Yield, nutrient use efficiency and economic profitability were determined following standard agronomic and economic measurements and calculations. Cool Farm Tool (CET), an empirical model to estimate greenhouse gases (GHGs) from agriculture production, was used to estimate GHG emissions under different treatments. Wheat grain and biomass yield were higher under NT in 2010-11 but no difference was observed in 2011-12. The three NE-based nutrient management strategies increased yield, nutrient use efficiency as well as net return as compared to state recommendation and farmers' fertilization practice. Global warming potential (GWP) of wheat production was also lower with NT system as compared to CT system and NE-based nutrient managements as compared to farmers' fertilization practice. State recommended nutrient management had similar GWP as NE-based nutrient managements except NE80:GS in which GWP was the lowest. Results suggest that no-tillage system along with site-specific approaches for nutrient management can increase yield, nutrient use efficiency and profitability while decreasing GHG from wheat production in NW India.
- Authors:
- Ruser, R.
- Stolze, M.
- Fliessbach, A.
- Maeder, P.
- Muller, A.
- Gattinger, A.
- Skinner, C.
- Niggli, U.
- Source: Science of The Total Environment
- Volume: 468-469
- Issue: January
- Year: 2014
- Summary: It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 +/- 160 kg CO2 eq. ha(-1) a(-1) lower than from non-organically managed soils. For arable soils the difference amounts to 497 +/- 162 kg CO2 eq. ha(-1) a(-1). However, yield-scaled nitrous oxide emissions are higher by 41 +/- 34 kg CO2 eq. t(-1) DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 +/- 2.5 kg CO2 eq. ha(-1) a(-1) for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. (C) 2013 Elsevier B.V. All rights reserved.
- Authors:
- Wassmann, R.
- Sharma, D. K.
- Sharma, P. C.
- Kumar, V.
- Sharma, S.
- Gathala, M.
- Rai, M.
- Tirol-Padre, A.
- Ladha, J.
- Source: Global Change Biology
- Volume: 20
- Issue: 1
- Year: 2014
- Summary: Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2O, CO2, and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3ppm for every 1000mgcm(-3) increase in water vapor. The daily CO2, N2O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2O (PN2O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2O fluxes across N levels were higher than those of GC-CH4 and GC-N2O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.
- Authors:
- Gavito, M. E.
- Garciarreal, A.
- Villamil-Echeverri, L.
- Merlin-Uribe, Y.
- Astier, M.
- Masera, O. R.
- Source: Ecological Indicators
- Volume: 43
- Issue: August
- Year: 2014
- Summary: There is a worldwide growing awareness of the negative impacts of the increasing fossil fuel reliance and greenhouse gas (GHG) emissions from agriculture, in particular for intensive crop systems. We analyze the energy balances and greenhouse gas emissions from export-oriented avocado orchards in Mexico. Avocado is a very important export crop and one of the main drivers of land-use change in the country. We compared 12 avocado orchards under organic and conventional management during two production cycles (2010 and 2011) in a representative region of Central Mexico. Our analysis shows no significant differences in energy consumption and GHG emissions between organic and conventional systems with 55 and 56 GJ ha(-1), and 3.30 t CO2 equiv. ha(-1) and 3.57 t CO2 equiv. ha(-1), respectively. Organic systems show three times more use of renewable energy than their conventional counterparts. However both systems depend heavily on fossil fuel inputs, machinery and N-fertilizers (synthetic or organic). Also, there is a high heterogeneity in management practices and input application within both systems, which is reflected in a large variation of their energy-related parameters. Given that avocado production is rapidly expanding in Mexico, a move toward organic production without systematically changing toward less fossil fuel dependent agricultural practices would not be sufficient to ensure a sustainable production. (c) 2014 Elsevier Ltd. All rights reserved.
- Authors:
- Farquharson, R.
- Cressie, N.
- Baldock, J.
- Pagendam, D.
- Clifford, D.
- Farrell, M.
- Macdonald, L.
- Murray, L.
- Source: Environmetrics
- Volume: 25
- Issue: 4
- Year: 2014
- Summary: The benefits of sequestering carbon are many, including improved crop productivity, reductions in greenhouse gases, and financial gains through the sale of carbon credits. Achieving better understanding of the sequestration process has motivated many deterministic models of soil carbon dynamics, but none of these models address uncertainty in a comprehensive manner. Uncertainty arises in many ways - around the model inputs, parameters, and dynamics, and subsequently model predictions. In this paper, these uncertainties are addressed in concert by incorporating a physical-statistical model for carbon dynamics within a Bayesian hierarchical modelling framework. This comprehensive approach to accounting for uncertainty in soil carbon modelling has not been attempted previously. This paper demonstrates proof-of-concept based on a one-pool model and identifies requirements for extension to multi-pool carbon modelling. Our model is based on the soil carbon dynamics in Tarlee, South Australia. We specify the model conditionally through its parameters, soil carbon input and decay processes and observations of those processes. We use a particle marginal Metropolis-Hastings approach specified using the LibBi modelling language. We highlight how samples from the posterior distribution can be used to summarise our knowledge about model parameters, to estimate the probabilities of sequestering carbon and to forecast changes in carbon stocks under crop rotations not represented explicitly in the original field trials.
- Authors:
- Malins, C. J.
- Searle, S. Y.
- Source: Biomass and Bioenergy
- Volume: 65
- Issue: June
- Year: 2014
- Summary: Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switch grass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha(-1) y(-1) in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus x giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. (c) 2014 Elsevier Ltd. All rights reserved.
- Authors:
- Mihalache, M.
- Fintineru, G.
- Stan, V.
- Source: Notulae Botanicae Horti Agrobotanici Cluj-Napoca
- Volume: 42
- Issue: 1
- Year: 2014
- Summary: Burning crop residues is frequently used by Romanian land users to clean agricultural fields after crop harvest for ease in postharvest soil tillage. Huge amounts of crop residues biomass, on very large areas, were burned in Romania in the last twenty years, as compared to other countries. There are several reasons (e.g. the lack of equipment to gather the crop residues and to transport and store them, the diminishing of the livestock after 1990, the absence of other alternatives, especially in the 1990s, but also the lack of information regarding the good practices) that are evocated to support the use of this method. However, this method is not a sustainable one since it can cause many environmental damages, especially related to soil properties (physical, chemical and biological), greenhouse gas emission and crop yields. Contrary to the above stated, crop residues' addition to the soil may restore damaged soil structure, improve aggregate stability, soil water retention, soil fertility, increase total organic carbon (TOC) and total nitrogen (TN) etc. The purpose of this paper is to make a multicriteria analyze of the effects of crop residue management on the soil, agricultural productivity and environment. At the same time, the use of crop residues biomass as a source of energy is presented as an alternative, given its potential ability to offset fossil fuels and reduce CO 2 emissions.
- Authors:
- Yu, Y.
- Zhang, W.
- Li, T.
- Wang, G.
- Source: PLoS ONE
- Volume: 9
- Issue: 4
- Year: 2014
- Summary: Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 kmx10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha(-1) yr(-1). With a moderate rate of manure application (i.e., 2000 kg ha(-1) yr(-1)), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha(-1) yr(-1)), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha(-1) yr(-1) and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha(-1) during 2010s to the current worldwide average of similar to 55 Mg ha(-1) during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.
- Authors:
- Sui, P.
- Chen, Y.
- Zhang, M.
- Gao, W.
- Yang, X.
- Source: Journal of Cleaner Production
- Volume: 76
- Issue: August
- Year: 2014
- Summary: Increasing atmospheric concentrations of greenhouse gases has caused grievous global warming and associated consequences. Lowering carbon footprint to promote the development of cleaner production demands the immediate attention. In this study, the carbon footprint calculations were performed on five cropping systems in North China Plain from 2003 to 2010. The five cropping systems included sweet potato -> cotton -> sweet potato -> winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton -> peanut -> winter wheat-summer maize (RCPWS, 3-year cycle), peanut -> winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C), established in a randomized complete-block design with three replicates. We used a modified carbon footprint calculation with localized greenhouse gas emissions parameters to analyze the carbon footprint of each cropping system per unit area, per kg biomass, and per unit economic output. Results showed that the lowest annual carbon footprint values were observed in SpCSpWS among the five cropping systems, which were only 27.9%, 28.2% and 25.0% of those in WS rotation system (the highest carbon footprint) in terms of per unit area, per unit biomass, and per unit economic output, respectively. The five cropping systems showed the order of SpCSpWS < Cont C < RCPWS < PWS < WS sorting by their annual carbon footprint calculated by all the three metrics above-mentioned. Results revealed that appropriate diversified crop rotation systems could contribute to decreased carbon footprint compared with conventional intensive crop production system in North China Plain. (C) 2014 Elsevier Ltd. All rights reserved.
- Authors:
- Johnston, A.
- Snapp, S.
- Zingore, S.
- Chikowo, R.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 100
- Issue: 1
- Year: 2014
- Summary: Farm typologies are a useful tool to assist in unpacking and understanding the wide diversity among smallholder farms to improve targeting of crop production intensification strategies. Sustainable crop production intensification will require the development of an array of nutrient management strategies tailored to farm-specific conditions, rather than blanket recommendations across diverse farms. This study reviewed key literature on smallholder farm typologies focusing on three countries (Kenya, Malawi and Zimbabwe), to gain insights on opportunities for crop production intensification, and the importance of developing farm-specific nutrient management practices. Investigations on farm typologies have done well in highlighting the fundamental differences between farm categories, with 3-5 typologies often adequate to represent the wide differences in resource endowment. Resource-endowed farmers have ready access to large quantities of manure and mineral fertilizers, which contribute to higher soil fertility and crop productivity on their farms. Resource-constrained households use little or no manure and mineral fertilizers, and have limited capacity to invest in labour-demanding soil fertility management technologies. These farmers often have to rely on off-farm opportunities for income that are largely limited to selling unskilled labour to their resource-endowed neighbors. The variability in management practices by farmers has resulted in three main soil fertility classes that can be used for targeting soil fertility management technologies, characterized by potential response to fertilizer application as: (1) low-responsive fertile fields that receive large additions of manure and fertilizer; (2) high-responsive infertile fields that receive moderate nutrient applications; (3) poorly responsive degraded soils cultivated for many years with little or no nutrient additions. The main conclusions drawn from the review are: (1) resource constrained farmers constitute the widest band across the three countries, with many of the farmers far below the threshold for sustainable maize production intensification and lacking capacity to invest in improved seed and fertilizer, (2) farm sizes and livestock ownership were key determinants for both farmer wealth status and farm productivity, and (3) soil organic carbon and available P were good indicators for predicting previous land management, that is also invariably linked to farmer resource endowment.