• Authors:
    • Kelly, K.
    • Phillips, F.
    • Baigent, R.
  • Source: Greenhouse Gases and Animal Agriculture
  • Year: 2007
  • Authors:
    • Chen, D.
    • Kelly, K.
    • Li, Y.
  • Source: ASA-CSSA-SSSA International Annual Meetings (November 4-8, 2007)
  • Year: 2007
  • Authors:
    • White, R. E.
    • Chapman, D. F.
    • Eckard, R. J.
  • Source: Australian Journal of Agricultural Research
  • Volume: 58
  • Issue: 12
  • Year: 2007
  • Authors:
    • McGregor, A.
    • Slattery, B.
    • Ugalde, D.
    • Brungs, A.
    • Kaebernick, M.
  • Source: Soil & Tillage Research
  • Volume: 97
  • Issue: 2
  • Year: 2007
  • Authors:
    • Reule, C. A.
    • Halvorson, A. D.
  • Source: Agronomy Journal
  • Volume: 99
  • Issue: 6
  • Year: 2007
  • Summary: Converting irrigated, conventional-till (CT) systems to no-till (NT) production systems can potentially reduce soil erosion, fossil fuel consumption, and greenhouse gas emissions. Nitrogen fertilization effects on irrigated corn (Zea mays L.) and malting barley (Hordeum distichon L.) yields in a corn-barley rotation were evaluated for 6 yr on a clay loam soil to determine the viability of using a NT system and N needs for optimum crop yield. Six N treatments were established with N rates varying from 0 to 224 kg N ha(-1) for corn and 0 to 1.12 kg N ha(-1) for barley. Corn and barley grain yields were significantly increased by N fertilization each of 3 yr in the rotation. Three year average corn grain yields were near maximum with an available N (AN) (soil + fertilizer + irrigation water N) level of 274 kg N ha(-1). Barley yields increased linearly with increasing N rate with grain protein content near 130 kg protein Mg-1 grain at the highest N rate. Nitrogen use efficiency (NUE) by corn and barley, based on grain N removal, decreased with increasing AN level and ranged from 204 to 39 and 68 to 31 kg grain kg(-1) AN for the low and high N treatments for corn and barley, respectively. Total plant N uptake required to produce one Mg grain at near maximum yield in this study averaged 21 kg N for corn and 27 kg N for barley. Corn and barley residue production increased with increasing N rate. Irrigated, NT corn yields obtained in this corn-barley rotation were acceptable (>10 Mg ha(-1)) for northern Colorado; however, barley yields did not meet our expected yield goal of 5.4 Mg ha(-1) with the N rates used in this study, but grain protein was near maximum for malting barley. An irrigated, NT corn-barley production system appears to be feasible in northern Colorado.
  • Authors:
    • Jin, H.
    • Hongwen, L.
    • Xiaoyan, W.
    • McHugh, A. D.
    • Wenying, L.
    • Huanwen, G.
    • Kuhn, N. J.
  • Source: Soil & Tillage Research
  • Volume: 94
  • Issue: 2
  • Year: 2007
  • Summary: Soil compaction caused by random traffic or repetitive tillage has been shown to reduce water use efficiency, and thus crop yield due to reduced porosity, decreased water infiltration and availability of nutrients. Conservation tillage coupled with subsoiling in northern China is widely believed to reduce soil compaction, which was created after many years of no-till. However, limited research has been conducted on the most effective time interval for subsoiling, under conservation tillage. Data from conservation tillage demonstration sites operating for 10 years in northern China were used to conduct a comparative study of subsoiling interval under conservation tillage. Three modes of traditional tillage, subsoiling with soil cover and no-till with soil cover were compared using 10 years of soil bulk density, water content, yield and water use efficiency data. Cost benefit analysis was conducted on subsoiling time interval under conservation tillage. Yield and power consumption were assessed by based on the use of a single pass combine subsoiler and planter. Annual subsoiling was effective in reducing bulk density by only 4.9% compared with no-till treatments on the silty loam soils of the Loess plateau, but provided no extra benefit in terms of soil water loss, yield increase or water utilization. With the exception of bulk density, no-till and subsoiling with cover were vastly superior in increasing water use (+10.5%) efficiency and yield (+12.9%) compared to traditional tillage methods. Four years of no-till followed by one subsoiling reduced mechanical inputs by 62%, providing an economic benefit of 49% for maize and 209% for wheat production compared to traditional tillage. Annual subsoiling reduced inputs by 25% with an increased economic benefit of 23% for maize and 135% for wheat production. Yield and power consumption was improved by 5% and 20%, respectively, by combining subsoiling with the planting operation in one pass compared with multipass operations of subsoiling and planting. A key conclusion from this is that annual subsoiling in dryland areas of northern China is uneconomical and unwarranted. Four years of no-till operations followed by 1 year subsoiling provided some relief from accumulated soil compaction. However, minimum soil disturbance and maximum soil cover are key elements of no-till for saving water and improving yields. Improved yields and reduced farm power consumption could provide a significant base on which to promote combined planter and subsoiling operations throughout northern China. Further research is required to develop a better understanding of the linkages between conservation tillage, soil quality and yield, aimed at designing most appropriate conservation tillage schemes.
  • Authors:
    • Paustian, K.
    • Williams, S.
    • Easter, M.
    • Breidt, F. J.
    • Ogle, S. M.
  • Source: Ecological Modelling
  • Volume: 205
  • Issue: 3-4
  • Year: 2007
  • Summary: Simulation modelling is used to estimate C sequestration associated with agricultural management for purposes of greenhouse gas mitigation. Models are not completely accurate or precise estimators of C pools, however, due to insufficient knowledge and imperfect conceptualizations about ecosystem processes, leading to uncertainty in the results. It can be difficult to quantify the uncertainty using traditional error propagation techniques, such as Monte Carlo Analyses, because of the structural complexity of simulation models. Empirically based methods provide an alternative to the error propagation techniques, and our objective was to apply this alternative approach. Specifically, we developed a linear mixed-effect model to quantify both bias and variance in modeled soil C stocks that were estimated using the Century ecosystem simulation model. The statistical analysis was based on measurements from 47 agricultural experiments. A significant relationship was found between model results and measurements although there were biases and imprecision in the modeled estimates. Century under-estimated soil C stocks for several management practices, including organic amendments, no-till adoption, and inclusion of hay or pasture in rotation with annual crops. Century also over-estimated the impact of N fertilization on soil C stocks. For lands set-aside from agricultural production, Century under-estimated soil C stocks on low carbon soils and over-estimated the stocks on high carbon soils. Using an empirically based approach allows for simulation model results to be adjusted for biases as well as quantify the variance associated with modeled estimates, according to the measured "reality" of management impacts from a network of experimental sites.
  • Authors:
    • Torbert, H. A.
    • Scopel, E.
    • Velazquez-Garcia, I.
    • Potter, K. N.
  • Source: Journal of Soil and Water Conservation
  • Volume: 62
  • Issue: 2
  • Year: 2007
  • Summary: While no-till management practices usually result in increased soil organic carbon (SOC) contents, the effect of residue removal with no-till is not well understood, especially in warmer climates. A multi-year study was conducted at six locations having a wide range of climatic conditions in central Mexico to determine the effect of varying rates of residue removal with no-till oil SOC. Mean annual temperatures ranged from 16 degrees C to 27 degrees C (61 degrees F to 81 degrees F). Mean annual rainfall ranged from 618 to 1099 min yr(-1) (24 to 43 in yr(-1)). Treatments consisted of annual moldboard plowing under residue and no-till with 100%, 66%, 33%, and no corn (Zea mays L.) residue retained oil the no-till surface. At five of the six locations, no-till with all surface residues removed maintained SOC levels above that of moldboard plowing which incorporated all residues. Retaining 100% of the crop residues with no-till always increased or maintained the SOC content. SOC increased in cooler climates, but as mean annual temperature increased, more retained crop residues were needed to increase the SOC. In tropical (mean annual temperature > 20 degrees C) conditions, 100% corn residue retention with no-till only maintained SOC levels. Mean annual temperature ad a greater impact oil SOC than did annual rainfall. It appears that, in warmer climates, residue in excess of that needed for erosion control may be used for animal fodder or energy production. At the higher temperatures, most of the residue will decompose if left oil the soil surface Without improving soil carbon contents.
  • Authors:
    • de Moura, R. L.
    • Klonsky, K. M.
    • Peacock, W. L.
    • Hashim-Buckey, J. M.
    • Vasquez, S. J.
  • Source: University of California Cooperative Extension Publication
  • Year: 2007
  • Authors:
    • Li, F.
    • Ma, Q.
    • Wang, Z.
    • Li, X.
  • Source: Soil & Tillage Research
  • Volume: 95
  • Issue: 1
  • Year: 2007
  • Summary: The effects of cultivation and overgrazing on soil quality in arid regions have been rarely addressed. This study investigated the roles of cropping and grazing in soil organic C pools and aggregate stability at 0-20 cm depth by comparing conventional grazing (non-fenced ever), intensive grazing (fenced for 22 years) and cropping (cultivated for 40 years) in the arid Hexi Corridor of northwestern China. Total soil organic C (TOC) under non-fenced grazing was 21.6 g kg-1 (or 52.9 Mg ha-1), which was 19.9% (or 13.2% mass per area) lower than that under fenced grazing, because of lower stable organic C fraction (0.25 mm) in total aggregates and mean weight diameter were 15% and 0.28 mm under cropping, significantly lower than 65% and 3.11 mm under non-fenced grazing and 65% and 2.84 mm under fenced grazing. The aggregates of >1 mm were almost entirely demolished under cropping when subjected to wet sieving. Reduction of soil carbohydrates under cropping was closely related to the decline in aggregate water-stability. The negative effects of cropping on soil organic C pool and aggregate water-stability may suggest that cropping on this arid grassland is not sustainable unless no-tillage is adopted. In favor of increasing soil carbohydrates and maintaining soil aggregation, fenced-grazing would be a better option than cropping and non-fenced grazing for the management of arid grasslands.