- Authors:
- Vencill, W.
- Schomberg, H. H.
- Phatak, S. C.
- Díaz-Pérez, J. C.
- Skinner, E. M.
- Source: HortScience
- Volume: 47
- Issue: 1
- Year: 2012
- Summary: Sunnhemp (Crotalaria juncea L.) is a tropical legume that could be an important summer cover crop in the southeastern United States, but it has the potential for suppressing both crops and weeds. Allelopathic effects of sunnhemp on weeds, vegetable crops, and cover crops were evaluated in greenhouse and growth chamber experiments. In the greenhouse, ground dried sunnhemp residues (applied mixed with the soil at 1.6% w/w) reduced percent germination of lettuce (Lactuca sativa L.) and smooth pigweed (Amaranthus hybridus L.) to a similar degree as that caused by cereal rye (Secale cereale L. subsp. cereale) residues (applied at 1.5% w/w). The allelopathic activity of sunnhemp was greater in the leaves than in the roots or stems. In growth chamber studies, the mean reduction in germination (relative to the control) caused by sunnhemp leaf aqueous extracts was: bell pepper (100%), tomato (100%), onion (95%), turnip (69%), okra (49%), cowpea (39%), collard (34%), cereal rye (22%), sweet corn (14%), Austrian winter pea (10%), crimson clover (8%), cucumber (2%), and winter wheat (2%). In lettuce, carrot, smooth pigweed, and annual ryegrass, sunnhemp aqueous leaf extract reduced seedling length to a degree similar as that produced by rye aqueous leaf extract. Sicklepod [Senna obtusifolia (L.) H.S. Irwin & Barneby CA] germination was not inhibited by any of the sunnhemp or rye aqueous extracts. In conclusion, sunnhemp reduced the germination percentage and seedling growth of various crop species. The allelochemical activity in sunnhemp was primarily in the leaves and remained active at least 16 d after harvest under dry conditions. Sunnhemp's allelochemical effect may be a useful attribute for weed management in sustainable production systems. However, plant growth in the field in crops such as bell pepper, tomato, onion, and turnip may be impacted as a result of allelopathic activity of sunnhemp residues. Thus, weed management may be more effective when sunnhemp is grown in rotation with crops that tolerate the allelochemicals from sunnhemp, resulting in optimization of the rotation effects.
- Authors:
- Pereira Nóbrega, L. H.
- dos Santos, D.
- Gonçalves Junior, A. C.
- de Souza, E. G.
- Tavares-Silva, C. A.
- Source: Food, Agriculture and Environment (JFAE)
- Volume: 10
- Issue: 1
- Year: 2012
- Summary: No-tillage system is an alternative agricultural management to protect soil; however, the cover crops association is required in crop rotation or succession, allowing an amount of nutrients supply and organic matter to soil through mineralization of plant residues. Thus, this trial aimed at evaluating the effects of crops succession on soybean yield and on chemical properties of soil: calcium, magnesium and aluminium saturation (m%). The trial was carried out in Cafelandia (PR) city, in a typical eutrophic red latosol, from June 2008 to March 2010. The experimental design was completely randomized with five treatments: black oat; consortium 1 (turnip and black oat); consortium 2 (turnip, black oat and common vetch), wheat and fallow, with six replications in a 2 ha area, in four periods during two agricultural harvests, in order to record chemical analyses of soil in a depth from 0 to 0.2 m. The cover crops management was with roll-knife, while wheat was harvested with an automotive combine. Soybean was sown in summer and its yield was determined for each treatment. Winter cover crops influenced on Mg concentration in soil when evaluated after soybean harvest in 2010, so that, black oat and the second consortium were the main responsible for such increase, although, the treatments showed no effect on soybean yield during the 2009/2010 harvest.
- Authors:
- Merckx, R.
- Vanuytrecht, E.
- Clymans, W.
- Langhans, C.
- Diels, J.
- Govers, G.
- Van den Putte, A.
- Raes, D.
- Source: Soil & Tillage Research
- Volume: 122
- Year: 2012
- Summary: One of the most frequently used techniques to combat soil erosion on agricultural fields is conservation agriculture (CA). Conservation tillage techniques (CT), together with residue management and rotation are the pillars of CA. Studies have shown that CT can indeed be very effective in combating soil erosion. While several studies have demonstrated how CT may affect (the distribution of) carbon in the soil and documented compaction risks under CT, much less information is available with respect to the potential effects of CT on within-soil water movement and nutrient status. We therefore investigated the effect of superficial (0.15-0.2 m depth) and deep (0.3-0.4 m depth) CT on soil properties of agricultural silt loam soils in Belgium. From 2008 to 2010, we analyzed the effect of CT on water content, hydraulic conductivity, penetration resistance, bulk density, organic carbon and nitrate content of the soil. At the same time the effect of CT on root growth and crop yield was analyzed. We found that soil structural differences between conventional mouldboard ploughing and deep CT tended to be very small and did not have any effect on root growth and/or crop yield. Furthermore, we were not able to detect any significant difference between the different implements used in CT. The application of superficial CT however, led to an increase in penetration resistance in the upper soil layer hindering vertical soil water movement and root growth on one trial field. Crop yield was not affected due to a sufficient water and nutrient supply. Effects of deep CT on water availability and water movement were very limited and suggest that deep CT may slightly improve water availability only during dry summer periods. Total carbon content was not affected by CT, but its distribution through the plough layer changed whereby the carbon content in the upper few centimetres of soil increased while a decrease was noted at greater depths. The reduction of the nitrate content observed in deeper soil layers indicates that reduced tillage did not lead to increased nitrate leaching and may even help to reduce this problem if adequate catch crops are planted. We conclude that, on the Belgian silt loam soils, deep CT can be practiced whereby good soil functioning can be ensured. As crop yields were also similar, deep CT is a viable alternative that may contribute to soil protection. The use of superficial CT cannot be recommended due to a compaction risk. (c) 2012 Elsevier B.V. All rights reserved.
- Authors:
- Nichols ,R. L.
- Webster, T. M.
- Source: Weed Science
- Volume: 60
- Issue: 2
- Year: 2012
- Summary: Changes in the weed flora of cropping systems reflect the impacts of factors that create safe sites for weed establishment and facilitate the influx and losses to and from the soil seedbank. This analysis of the annual surveys of the Southern Weed Science Society documents changes in the weed flora of the 14 contiguous southern states since the advent of transgenic, herbicide-resistant crops. In 1994 and 2009, the top five weeds in corn were morningglories, Texas millet, broadleaf signalgrass, johnsongrass, and sicklepod; in this same period Palmer amaranth, smartweeds, and goosegrass had the greatest increases in importance in corn. In cotton, morningglories and nutsedges were among the top five most troublesome weeds in 1995 and 2009. Palmer amaranth, pigweeds, and Florida pusley were also among the five most troublesome species in 2009; the weeds with the largest increases in importance in cotton were common ragweed and two species with tolerance to glyphosate, Benghal dayflower and Florida pusley. In soybean, morningglories, nutsedges, and sicklepod were among the top five weed species in 1995 and 2009. Two species with glyphosate resistance, Palmer amaranth and horseweed, were the second and fourth most troublesome weeds of soybean in 2009. In wheat, the top four weeds in 2008 were the same as those in 1994 and included Italian ryegrass, wild garlic, wild radish, and henbit. Crop production in the southern region is a mosaic of various crop rotations, soil types, and types of tillage. During the interval between the surveys, the predominant change in weed management practices in the region and the nation was the onset and rapid dominance of the use of glyphosate in herbicide-resistant cultivars of corn, cotton, and soybean. Because of the correspondence between the effects of glyphosate on the respective weed species and the observed changes in the weed flora of the crops, it is likely the very broad use of glyphosate was a key component shaping the changes in weed flora. Only eight of the top 15 most troublesome weeds of cotton and soybean, the crops with the greatest use of glyphosate, were the same in 1995 and 2009. In contrast, in corn and wheat where adoption of glyphosate-resistant cultivars lags or is absent, 12 of the 15 most troublesome weeds were the same in 1994 and 2008. These findings show on a regional scale that weeds adapt to recurrent selection from herbicides, currently the predominant weed management tool. Future research should seek methods to hinder the rapid spread of herbicide-tolerant and evolution of herbicide-resistant weed species. As new tools are developed, research should focus on ways to preserve the efficacy of those tools through improved stewardship. Nomenclature: annual bluegrass, Poa annua L. POAAN; Benghal dayflower, Commelina benghalensis L. COMBE; broadleaf signalgrass, Urochloa platyphylla (Nash) R.D. Webster BRAPP; common ragweed, Ambrosia artemisiifolia L. AMBEL; Florida pusley Richardia scabra L. RCHSC; goosegrass Eleusine indica (L.) Gaertn. ELEIN; groundcherries, Physalis spp.; henbit, Lamium amplexicaule L. LAMAM; horseweed, Conyza canadensis (L.) Cronq. ERICA; Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU; johnsongrass, Sorghum halepense (L.) Pers. SORHA; morningglories, Ipomoea spp.; nutsedges, Cyperus spp.; Palmer amaranth, Amaranthus palmeri S. Wats. AMAPA; pigweed, Amaranthus spp.; sicklepod, Senna obtusifolia (L.) H.S. Irwin & Barneby CASOB; smartweeds, Polygonum spp.; Texas millet, Urochloa texana (Buckl.) R. Webster PANTE; wild garlic, Allium vineale L. ALLVI; wild radish, Raphanus raphanistrum L. RAPRA; corn, Zea mays L.; cotton, Gossypium hirsutum L.; soybean Glycine max. (L.) Merr.; wheat, Triticum aestivum L.
- Authors:
- Weirich Neto, P. H.
- Lopes, A. R. C.
- Source: Engenharia AgrÃcola
- Volume: 32
- Issue: 2
- Year: 2012
- Summary: The seeding process was the operation that suffered the most changes in no-tillage system due the cover crop soil and new particle soil arrangement. The objective of this study was to verify the effects of loads applied to the wheels and adjustments of sowing depth on seedling emergence of corn in no-tillage system. The experimental design was completely randomized with a factorial arrangement 5*4, with five loads applied to the wheels and four theoretical sowing depth adjustments. The real sowing depth increased in the lower theoretical depth and decreased in the higher theoretical depth, due to the compaction loads. Regarding the time of emergence, loads applied had not influence at the greater depths. Emergence time decreased with the load increase in the lower depths. Thus, the adjustment of the compactor wheels can influence in the corn seeding process.
- Authors:
- Li, Y. Q.
- Liu, H. B.
- Li, M. F.
- Fan, L.
- Wu, W.
- Source: Transactions of the Chinese Society of Agricultural Engineering
- Volume: 28
- Issue: 3
- Year: 2012
- Summary: The records of daily solar radiation (Rs, MJ.m -2.d -1) are the important inputs for crop simulation models. However, for some model users, Rs at longer temporal intervals are more available than that at daily scale. The objective of this study was to analyze the sensitivity of simulated crop growth and production using CERES-Maize and GROPGRO-Soybean, two widely used crop growth models, to uncertainty in Rs at different time scales (5-day, 10-day, and monthly). Daily radiation data (1961-1990) from Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) for the state of Georgia, USA were used to create 5-day, 10-day, and monthly mean daily Rs data sets. Datasets related to daily Rs were used as background baselines. The overall performance of the models was not significantly affected by Rs under the studied time scales. Within locations, the simulated days to anthesis and grain yields from 5-day, 10-day, and monthly Rs were close to that from daily Rs for maize and soybean under rainfed and irrigated conditions, respectively. Mean values of relative mean bias error (RMBE), mean bias error (MBE) and root mean square error (RMSE) of the simulated days to anthesis were 0, 0 and 3.5 d for the two crops under the studied scenarios, respectively. The simulated yields were underestimated for maize and overestimated for soybean using 5-day, 10-day, and monthly Rs for both rainfed and irrigated conditions, respectively. Under rainfed and irrigated conditions, the average RMBE and RMSE were -0.59%, 120 kg/hm 2 and -0.52%, 129 kg/hm 2 for maize yield, and 5%, 152 kg/hm 2 and 4.7%, 165 kg/hm 2 for soybean, respectively. Short-term bias in the difference between evaluated time scales and daily scale could affect the outputs of the crop models. Under the scenarios evaluated, CGOPGRO-Soybean model showed higher sensitivity to changes in multi-temporal Rs and water regimes than CERES-Maize model. Based on the results of this study, it can be concluded that 5-day, 10-day, and monthly mean daily Rs could be used as an input for crop growth simulation models when daily Rs are not available.
- Authors:
- Zheng, Y. K.
- Yang, G. A.
- Vasseur, L.
- You, M. S.
- Yao, F. L.
- Source: Crop Protection
- Volume: 34
- Year: 2012
- Summary: The frequent outbreaks of rice planthoppers, especially brown planthopper Nilaparvata lugens (Stal), in the last ten years in China and other Asian countries have caused serious rice ( Oryza sativa L.) yield losses. The key problem is possibly due to biodiversity loss in rice ecosystems. We examined the potential of intercrops of soybean ( Glycine max L.) and corn ( Zea mays L.), both of which are more profitable than rice and mostly planted in levees, to diversify rice ecosystems and enhance insect pest management. We studied the impacts of such intercrops on planthopper populations and their natural enemies. The results showed significantly lower numbers of rice planthoppers in rice fields with intercrops of corn than in rice monocultures and rice fields with intercrops of soybean. Rice fields with corn intercrops had 26-48% fewer planthoppers than rice monoculture. Rice fields with soybean intercrops had lower rice planthopper abundance compared to rice monoculture in 2008 but higher in 2009. However, neither parasitoid nor predator numbers were significantly affected by intercropping. There were no significant differences in directional movements of planthoppers or natural enemies between crop subplots in the different cropping systems. Moreover, movement of planthoppers was very limited. Our study indicated that soybean and corn intercrops do not greatly enhance the ability of natural enemies to suppress planthoppers. However, rice fields with intercrops of corn had lower abundance of planthoppers and this strategy may be useful as part of an integrated pest management strategy for the sustainable rice production.
- Authors:
- Hayes, R. M.
- McClure, M. A.
- Yin, X. H.
- Source: Agricultural Sciences
- Volume: 3
- Issue: 2
- Year: 2012
- Summary: Nitrogen concentration in the ear leaf is a good indicator of corn (Zea mays L.) N nutrition status during late growing season. This study was done to examine the relationship of late-season ear leaf N concentration with early- to mid-season plant height of corn at Milan, TN from 2008 to 2010 using linear, quadratic, square root, logarithmic, and exponential models. Six N rate treatments (0, 62, 123, 185, 247, and 308 kg.N.ha -1) repeated four times were implemented each year in a randomized complete block design under four major cropping systems: corn after corn, corn after soybean [Glycine max (L.) Merr.], corn after cotton [Gossypium hirsutum (L.)], and irrigated corn after soybean. The relationship of ear leaf N concentration determined at the blister growth stage (R 2) with plant height measured at the 6-leaf (V6), 10-leaf (V10), and 12-leaf (V12) growth stages was statistically significant and positive in non-irrigated corn under normal weather conditions. However, the strength of this relationship was weak to moderate with the determination coefficient (R 2) values ranging from 0.21 to 0.51. This relationship was generally improved as the growing season progressed from V6 to V12. Irrigation and abnormal weather seemed to have adverse effects on this relationship. The five regression models performed similarly in the evaluation of this relationship regardless of growth stage, year, and cropping system. Our results suggest that unlike the relationship of corn yield at harvest with plant height measured during early- to mid-season or the relationship of leaf N concentration with plant height when both are measured simultaneously during early- to mid-season, the relationship of late-season ear leaf N concentration with early- to mid-season plant height may not be strong enough to be used to develop algorithms for variable-rate N applications on corn within a field no matter which regression model is used to describe this relationship.
- Authors:
- Leytem, A. B.
- Venterea, R. T.
- Fixen, P. E.
- Snyder, C. S.
- Liebig, M. A.
- Del Grosso, S. J.
- Cavigelli, M. A.
- McLain, J. E.
- Watts, D. B.
- Source: Frontiers in Ecology and the Environment
- Volume: 10
- Issue: 10
- Year: 2012
- Summary: The use of commercial nitrogen (N) fertilizers has led to enormous increases in US agricultural productivity. However, N losses from agricultural systems have resulted in numerous deleterious environmental impacts, including a continuing increase in atmospheric nitrous oxide (N2O), a greenhouse gas (GHG) and an important catalyst of stratospheric ozone depletion. Although associated with about 7% of total US GHG emissions, agricultural systems account for 75% of total US N2O emissions. Increased productivity in the crop and livestock sectors during the past 30 to 70 years has resulted in decreased N2O emissions per unit of production, but N2O emissions from US agriculture continue to increase at a rate of approximately 0.46 teragrams of carbon dioxide equivalents per year (2002-2009). This rate is lower than that during the late 20th century. Improvements in agricultural productivity alone may be insufficient to lead to reduced emissions; implementing strategies specifically targeted at reducing N2O emissions may therefore be necessary. Front Ecol Environ 2012; 10(10): 537-546, doi:10.1890/120054
- Authors:
- Skiba, U.
- Baggs, E. M.
- Lloyd, C. R.
- Finch, J. W.
- Drewer, J.
- Source: GCB Bioenergy
- Volume: 4
- Issue: 4
- Year: 2012
- Summary: It is important to demonstrate that replacing fossil fuel with bioenergy crops can reduce the national greenhouse gas (GHG) footprint. We compared field emissions of nitrous oxide (N2O), methane (CH4) and soil respiration rates from the C-4 grass Miscanthus x giganteus and willow (salix) with emissions from annual arable crops grown for food production. The study was carried out in NE England on adjacent fields of willow, Miscanthus, wheat (Triticum aetivum) and oilseed rape (Brassica napus). N2O, CH4 fluxes and soil respiration rates were measured monthly using static chambers from June 2008 to November 2010. Net ecosystem exchange (NEE) of carbon dioxide (CO2) was measured by eddy covariance on Miscanthus from May 2008 and on willow from October 2009 until November 2010. The N2O fluxes were significantly smaller from the bioenergy crops than that of the annual crops. Average fluxes were 8 and 32 mu g m(-2) h(-1) N2O-N from wheat and oilseed rape, and 4 and 0.2 mu g m(-2) h(-1) N2O-N from Miscanthus and willow, respectively. Soil CH4 fluxes were negligible for all crops and soil respiration rates were similar for all crops. NEE of CO2 was larger for Miscanthus (-770 g C m(-2) h(-1)) than willow (-602 g C m(-2) h(-1)) in the growing season of 2010. N2O emissions from Miscanthus and willow were lower than for the wheat and oilseed rape which is most likely a result of regular fertilizer application and tillage in the annual arable cropping systems. Application of N-15-labelled fertilizer to Miscanthus and oil seed rape resulted in a fertilizer-induced increase in N2O emission in both crops. Denitrification rates (N2O + N-2) were similar for soil under Miscanthus and oilseed rape. Thus, perennial bioenergy crops only emit less GHGs than annual crops when they receive no or very low rates of N fertilizer.