• Authors:
    • Hanan, J.
    • Qu, S.
    • Doherty, A.
    • Song, Y.
    • Birch, C.
  • Source: Plant Production Science
  • Volume: 13
  • Issue: 2
  • Year: 2010
  • Summary: It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize ( Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rainfed and irrigated followed by rainfed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
  • Authors:
    • Maul, J. E.
    • Buyer, J. S.
    • Austin, E. E.
    • Treonis, A. M.
    • Spicer, L.
    • Zasada, I. A.
  • Source: Applied Soil Ecology
  • Volume: 46
  • Issue: 1
  • Year: 2010
  • Summary: Soil microorganisms (bacteria, fungi) and microfauna (nematodes, protozoa) have been shown to be sensitive to organic amendments, but few experiments have investigated the responses of all these organisms simultaneously and across the soil profile. We investigated the impact of organic amendment and tillage on the soil food web at two depths in a field experiment. Over three growing seasons, field plots received seasonal organic amendment that was either incorporated into the soil (tilled) or not (no-till) as part of a tomato/soybean/corn cropping system. Un-amended, control plots that were either tilled or no-till were also included. We hypothesized that the addition of amendments would have a bottom-up effect on the soil food web, positively influencing the abundance of microorganisms, protozoa, and nematodes, primarily in the surface layers of the soil, but that this effect could be extended into deeper layers via tillage. Organic amendment had positive effects on most measured variables, including organic matter, respiration, protozoan and nematode density, and the abundance of PLFA biomarkers for bacteria and fungi. These effects were more pronounced in the 0-5 cm depth, but most variables increased with amendment in the deeper layer as well, especially with tillage. Denaturing Gradient Gel Electrophoresis (DGGE) of bacterial rDNA fragments indicated that distinct bacterial communities were selected for among tillage and amendment treatments and depths. Nematode faunal indices were not influenced by amendment, however. Increased nematode density in amended soils encompassed all trophic groups of free-living nematodes, with the greatest response among fungal-feeders, particularly with tillage. Increased biomass of microorganisms and decomposer microfauna in amended, tilled soils (0-5 cm depth) corresponded with a decline in the abundance of plant-parasitic nematodes. In control soils (0-5 cm depth), tillage reduced the relative abundance of fungal-feeding nematodes and increased the density of bacterial-feeding nematodes, in particular nematode species contributing to the Enrichment Index. When combined with organic amendment however, tillage was associated with increases in fungal-feeding nematodes and fungal biomarker PLFA. The results of this study suggest that when combined with amendment, tillage enhances the soil food web beyond the effect of amendment alone and is associated with declines in plant-parasitic nematodes.
  • Authors:
    • Vieira, F. C. B.
    • Flores, J. P. C.
    • Anghinoni, I.
    • Souza, E. D.
    • Costa, S. E. V. G. A.
    • Martins, A. P.
    • Ferreira, E. V. O.
  • Source: Soil & Tillage Research
  • Volume: 109
  • Issue: 1
  • Year: 2010
  • Summary: The distribution of phosphorus in the soil profile as a function of soil tillage, fertilizer management system and cultivation time is strongly related to root distribution. As the dynamics of this process are not well understood, long-term experiments are useful to clarify the cumulative effect through time. The study evaluated an 18-year-old experiment carried out on Rhodic Paleudult soil, located in Rio Grande do Sul state - Brazil, with cover crops (black oat and vetch) in the winter and corn in the summer. In the 0- to 20-cm layer, the amounts of clay, silt and sand were 22, 14, and 64 g kg -1, respectively. This layer had a mean slope of 3%. The mean local annual rainfall is 1440 mm. The climate is subtropical with a warm humid summer (Cfa), according to the Koeppen classification. The treatments consisted of three soil managements (conventional tillage, no tillage and strip tillage) and three application modes (broadcast, row and strip) for triple superphosphate and potassium chloride fertilizers. Data for phosphorus and root distribution in the soil from the 1989/90, 1999/00 and 2006/07 growing seasons were used. Phosphorus stratification occurred through time, irrespective of soil and fertilizer management, mainly in the 0- to 5-cm layer. The tillage and fertilization systems promoted significant differences in the Pi and Pt fractions up to a depth of 20 cm. For the Po fraction, significant differences were found only in the 0- to 5- and 15- to 20-cm layers. Inorganic phosphorus accumulated in the fertilized zone (0-10 cm), with higher intensity in the no-tillage system under row fertilization with values around 150 mg dm -3. Root distribution presented a strong positive relationship with phosphorus distribution, exhibiting redistribution in the soil profile through time. This redistribution was accompanied by increases in organic phosphorus and total organic carbon content. Corn grain yield was not affected by long-term tillage systems.
  • Authors:
    • Hoffmann, A. A.
    • Penfold, C. M.
    • Sharley, D. J.
    • Thomson, L. J.
    • Danne, A.
  • Source: Environmental Entomology
  • Volume: 39
  • Issue: 3
  • Year: 2010
  • Summary: Indigenous cover crops have the potential to promote an increase in natural enemies providing fortuitous control of pest species and other ecosystem services. We test this idea in a vineyard in south eastern Australia, where reduced water availability because of drought coupled with increased temperatures has generated interest in sustainable alternatives to the exotic perennial cover crops commonly planted. Three endemic perennial cover crops, comprising the grasses Austrodanthonia richardsonii and Chloris truncata and a mix of two saltbushes ( Atriplex semibaccata and Atriplex suberecta) were established as cover crops and compared with introduced oats ( Avena sativa). Abundance of a range of predators and parasitoids was higher in vines with native cover crops compared with the oat control. In addition, predation levels of sentinel eggs of a common vineyard pest, light brown apple moth ( Epiphyas postvittana), were increased in the native cover crops. However, the native cover crops also increased the abundance of some potential pest species. Native plants therefore have potential to increase abundance of beneficial invertebrates that assist in pest control, but need to be used carefully to ensure that they do not increase local pest problems.
  • Authors:
    • Chen, L.
    • Sun, Q.
    • Li, H.
    • Fang, S.
  • Source: Agroforestry Systems
  • Volume: 79
  • Issue: 2
  • Year: 2010
  • Summary: The importance of agroforestry systems in CO 2 mitigation has become recognized worldwide in recent years. However, little is known about carbon (C) sequestered in poplar intercropping systems. This study aims compare the effects of three poplar intercropping designs (configuration A: 250 trees ha -1; configuration B: 167 trees ha -1 and configuration C: 94 trees ha -1) and two intercropping systems (wheat-maize cropping system and wheat-soybean cropping system) on biomass production and C stocks in poplar intercropping systems. The experiment was conducted at Suqian Ecological Demonstration Garden of fast-growing poplar plantations in northwestern Jiangsu, China. A significant difference in C concentration was observed among the poplar biomass components investigated ( P≤0.05), with the highest value in stemwood and the lowest in fine roots, ranging from 459.9 to 526.7 g kg -1. There was also a significant difference in C concentration among the different crop components ( P≤0.05), and the highest concentration was observed in the maize ear. Over the 5-year period, the total poplar biomass increased with increasing tree density, ranging from 8.77 to 15.12 tonnes ha -1, while annual biomass production among the crops ranged from 4.69 to 16.58 tonnes ha -1 in the three configurations. Overall, total C stock in the poplar intercropping system was affected by configurations and cropping systems, and configuration A obtained the largest total C stock, reaching 16.7 tonnes C ha -1 for the wheat-soybean cropping system and 18.9 tonnes C ha -1 for the wheat-maize cropping system. Results from this case study suggest that configuration A was a relative optimum poplar intercropping system both for economic benefits and for C sequestration.
  • Authors:
    • Xanthoulis, D.
    • Heens, B.
    • Fonder, N.
  • Source: Biotechnologie, Agronomie, Société et Environnement
  • Volume: 14
  • Issue: S1
  • Year: 2010
  • Summary: Experiments were performed over four years, testing five cultivations to optimise mineral nitrogen fertilisation when irrigation with wastewater occurs. The experimental site was located inside an irrigated perimeter around the agro-food industry Hesbaye Frost, producing frozen vegetables, in Belgium. Depending on the crop rotation adopted by the farmer, four vegetable cultivations (spinach, bean, carrot and broad bean) and one cereal (winter wheat) were tested. Because of the time required for implementation of the experiment and meteorological conditions, the irrigation factor was not tested for spinach (1999) and wheat (2000) cultivations. The two experimental factors were three fertilisation levels, with comparison to a reference without any mineral nitrogen supply, and irrigation with or without wastewater. These factors were assessed for their impacts on crop yields and mineral nitrogen residues in the soil after harvest. The three vegetable cultivations of bean, carrot and broad bean were irrigated and systematically presented statistically higher yields with wastewater irrigation supply than without. The fertilisation factor also significantly improved all the yields, or protein rate for cereal cultivation, except for carrot and broad bean where differences were not significant, even for the zero fertilisation rate. The nitrogen residues in the soil after harvest were acceptable and regular as long as the fertilisation advice was not exceeded; the maximum fertilisation level tested, 50% higher than the recommendation, systematically left unacceptable nitrogen residues in the soil, harmful for the environment. Mainly located on the top surface horizon layers, the nitrogen residues could be held back by a catch crop classified as a nitrogen trap, with the condition to be set on late summer, with fall being considered as too late to have any influence to avoid nitrogen leaching. For all fertilisation levels, nitrogen residues were too high for the broad beans cultivation because of the phenomenon of surface mineral nitrogen release, due to meteorological conditions and the wastewater high nitrogen load brought by irrigation. The nitrogen residues under conditions of no irrigation were higher than under irrigation. Irrigation allowed better nitrogen solubility, easier for uptake by the plants and thus left fewer residues in the soil.
  • Authors:
    • Garcia-Ruiz, J. M.
  • Source: Catena
  • Volume: 81
  • Issue: 1
  • Year: 2010
  • Summary: Soil erosion is a key factor in Mediterranean environments, and is not only closely related to geoecological factors (lithology, topography, and climatology) but also to land-use and plant cover changes. The long history of human activity in Spain explains the development of erosion landscapes and sedimentary structures (recent alluvial plains, alluvial fans, deltas and flat valleys infilled of sediment). For example, the expansion of cereal agriculture and transhumant livestock between the 16th and 19th centuries resulted in episodes of extensive soil erosion. During the 20th century farmland abandonment prevailed in mountain areas, resulting in a reduction of soil erosion due to vegetation recolonization whereas sheet-wash erosion, piping and gullying affected abandoned fields in semi-arid environments. The EU Agrarian Policy and the strengthening of national and international markets encouraged the expansion of almond and olive orchards into marginal lands, including steep, stony hill slopes. Vineyards also expanded to steep slopes, sometimes on new unstable bench terraces, thus leading to increased soil erosion particularly during intense rainstorms. The expansion of irrigated areas, partially on salty and poorly structured soils, resulted in piping development and salinization of effluents and the fluvial network. The trend towards larger fields and farms in both dry farming and irrigated systems has resulted in a relaxation of soil conservation practices.
  • Authors:
    • Claupein, W.
    • Mohring, J.
    • Bühler, A.
    • Gruber, S.
  • Source: European Journal of Agronomy
  • Volume: 33
  • Issue: 2
  • Year: 2010
  • Summary: Conventional tillage systems with high soil disturbance are being steadily replaced by tillage systems with low or no soil disturbance. An approach using three methodological steps (greenhouse, deliberate seed burial and field) revealed the long-term vertical distribution and losses of a soil seed bank as effects of different tillage operations. Seeds (oilseed rape; Brassica napus L.) and seed substitutes (plastic pellets) acted as models for a seed bank. (a) A pot experiment in the greenhouse showed that emergence rates were highest in soil depths of 1-5 cm. Germination and emergence was clearly reduced in depths of 0 and 7 cm, and emergence was completely inhibited at 12 cm. About 40-50% of seeds fell dormant in 0 and 12 cm depth, while almost no seeds fell dormant in 1-7 cm depth. (b) The high-dormancy variety Smart persisted to a high extent (60% of the initial seed number), but only 8% of seeds of the low-dormancy variety Express persisted over 4.5 years, after deliberate seed burial. Seed persistence was similar in all soil depths of 0-10 cm, 10-20 cm, and 20-30 cm. (c) The field experiment lasted from 2004 to 2009 and had different tillage treatments of inversion and non-inversion tillage: stubble tillage immediately after harvest combined with primary tillage by mouldboard plough (SP), chisel plough (SC), or rototiller (SRTT); primary tillage without stubble tillage by mouldboard plough (P), chisel plough (C); or no tillage (NT). The seed bank from an artificial seed rain of 20,000 seeds m -2 was significantly higher in all treatments with immediate stubble tillage, and clearly declined over time. However, seed bank depletion was slow once a seed bank had been established. The distribution of oilseed rape seeds and plastic pellets (7000 pellets m -2 broadcast) tended to equalise over the soil layers of 0-10, 10-20 and 20-30 cm over the course of five years. Since seed bank depletion was not attributable to a specific soil depth, shallow and low disturbance tillage did not generally result in a high seed persistence. More important than the depth was the timing of tillage. Though no-till systems provided conditions for seeds to fall dormant at the soil surface to a small extent, the effect lasted only for a limited time. Seed substitutes can be well used in methodological approaches to picture movement of seeds in the soil in order to optimize tillage strategies in agricultural practice.
  • Authors:
    • Park, S. W.
    • Lee, H. P.
    • Sung, C. H.
    • Lee, S. B.
    • Jang, T. I.
  • Source: Paddy and Water Environment
  • Volume: 8
  • Issue: 3
  • Year: 2010
  • Summary: This article describes the pilot study on the water reuse for agricultural irrigation in Korea. The project is a part of the application of wastewater reuse system for Agriculture project, a 21st Century Frontier R&D Program sponsored by the Ministry of Education, Science, and Technology and associated with the Sustainable Water Resources Research Program. The goal of the project was to develop infra-technologies necessary to reclaim wastewater for irrigation in agriculture. The project involved two phases: laboratory and field research. Reclamation techniques for irrigation and feasible reuse were developed as a first step in proposing appropriate water quality standards. Reclaimed wastewater of various qualities was used to irrigate cereal crops and vegetables, and possible adverse effects on crops, humans, and the environment were investigated. The optimal reclamation methods required to satisfy water quality standards were explored and the operational characteristics investigated. Moreover, an inventory of farmlands that could reuse reclaimed wastewater was established. Feasible delivery systems for irrigation were developed, and pilot project sites were identified. Finally, operational field data from pilot units were collected and analyzed. This research and development may help solve water shortage problems in Korea, which left unaddressed will have an adverse effect on future generations.
  • Authors:
    • Kumar, S. N.
    • Byjesh, K.
    • Aggarwal, P. K.
  • Source: Mitigation and Adaptation Strategies for Global Change
  • Volume: 15
  • Issue: 5
  • Year: 2010
  • Summary: Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize ( Zea mays L.), the third most important cereal crop in India, has a major role to play in country's food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO 2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.