• Authors:
    • Saggar, S.
    • de Klein, C. A. M.
    • Ledgard, S. F.
    • Luo, J.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 136
  • Issue: 3-4
  • Year: 2010
  • Summary: Nitrous oxide (N2O) emissions from grazed pastures represent a significant source of atmospheric N2O. With an improved understanding and quantification of N sources, transformation processes, and soil and climatic conditions controlling N2O emissions, a number of management options can be identified to reduce N2O emissions from grazed pasture systems. The mitigation options discussed in this paper are: optimum soil management, limiting the amount of N fertiliser or effluent applied when soil is wet; lowering the amount of N excreted in animal urine by using low-N feed supplements as an alternative to fertiliser N-boosted grass; plant and animal selection for increased N use efficiency, using N process inhibitors that inhibit the conversion of urea to ammonium and ammonium to nitrate in soil; use of stand-off/feed pads or housing systems during high risk periods of N loss. The use of single or multiple mitigation options always needs to be evaluated in a whole farm system context and account for total greenhouse gas emissions including methane and carbon dioxide. They should focus on ensuring overall efficiency gains through decreasing N losses per unit of animal production and achieving a tighter N cycle. Whole-system life-cycle-based environmental analysis should also be conducted to assess overall environmental emissions associated the N2O mitigation options. (C) 2009 Elsevier B.V. All rights reserved.
  • Authors:
    • Sun, O. J.
    • Wang, E. L.
    • Luo, Z. K.
  • Source: Geoderma
  • Volume: 155
  • Issue: 3-4
  • Year: 2010
  • Summary: Soil is the largest reservoir of carbon (C) in the terrestrial biosphere and a slight variation in this pool could lead to Substantial changes in the atmospheric CO2 concentration, thus impact significantly on the global climate. Cultivation of natural ecosystems has led to marked decline in soil C storage, such that conservation agricultural practices (CAPs) are widely recommended as options to increase soil C storage, thereby mitigating climate change. In this review, we summarise soil C change as a result of cultivation worldwide and in Australia. We then combine the available data to examine the effects of adopting CAPs on soil C dynamics in Australian agro-ecosystems. Finally, we discuss the future research priorities related to soil C dynamics. The available data show that in Australian agro-ecosystems, cultivation has led to C loss for more than 40 years, with a total C loss of approximately 51% in the surface 0.1 m of soil. Adoption of CAPs generally increased soil C. Introducing perennial plants into rotation had the greatest potential to increase soil C by 18% compared with other CAPs. However, the same CAPS Could result in different outcomes on soil C under different climate and soil combinations. No consistent trend of increase in soil C was found with the duration of CAP applications, implying that questions remain regarding long-term impact of CAPs. Most of the available data in Australia are limited to the surface 0.1 to 0.3 m of soil. Efforts are needed to investigate soil C change in deeper soil layers in Order to understand the impact of crop root growth and various agricultural practices on C distribution in soil profile. Elevated atmospheric CO2 concentration, global warming and rainfall change Could all alter the C balance of agricultural soils. Because of the complexity of soil C response to management and environmental factors, a system modelling approach Supported by sound experimental data would provide the most effective means to analyse the impact of different management practices and future climate change on soil C dynamics. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
  • Authors:
    • Sun, O. J.
    • Wang, E.
    • Luo, Z.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 139
  • Issue: 1-2
  • Year: 2010
  • Summary: Adopting no-tillage in agro-ecosystems has been widely recommended as a means of enhancing carbon (C) sequestration in soils. However, study results are inconsistent and varying from significant increase to significant decrease. It is unclear whether this variability is caused by environmental, or management factors or by sampling errors and analysis methodology. Using meta-analysis, we assessed the response of soil organic carbon (SOC) to conversion of management practice from conventional tillage (CT) to no-tillage (NT) based on global data from 69 paired-experiments, where soil sampling extended deeper than 40 cm. We found that cultivation of natural soils for more than 5 years, on average, resulted in soil C loss of more than 20 t ha-1, with no significant difference between CT and NT. Conversion from CT to NT changed distribution of C in the soil profile significantly, but did not increase the total SOC except in double cropping systems. After adopting NT, soil C increased by 3.15 +- 2.42 t ha-1 (mean ± 95% confidence interval) in the surface 10 cm of soil, but declined by 3.30 ± 1.61 t ha-1 in the 20-40 cm soil layer. Overall, adopting NT did not enhance soil total C stock down to 40 cm. Increased number of crop species in rotation resulted in less C accumulation in the surface soil and greater C loss in deeper layer. Increased crop frequency seemed to have the opposite effect and significantly increased soil C by 11% in the 0-60 cm soil. Neither mean annual temperature and mean annual rainfall nor nitrogen fertilization and duration of adopting NT affected the response of soil C stock to the adoption of NT. Our results highlight that the role of adopting NT in sequestrating C is greatly regulated by cropping systems. Increasing cropping frequency might be a more efficient strategy to sequester C in agro-ecosystems. More information on the effects of increasing crop species and frequency on soil C input and decomposition processes is needed to further our understanding on the potential ability of C sequestration in agricultural soils.
  • Authors:
    • MDEQ
    • Midwestern GHG Reduction Accord
  • Volume: 2010
  • Year: 2010
  • Summary: The Midwest Greenhouse Gas Reduction Accord (MGGRA) was a commitment by the governors of six Midwestern states and the premier of one Canadian province to reduce greenhouse gas (GHG) emissions through a regional cap-and-trade program and other complementary policy measures. The Accord was signed in November 2007 as a part of the Midwestern Governors Association Energy Security and Climate Change Summit. Though MGGRA has not been formally suspended, participating states are no longer pursuing it.
  • Authors:
    • Yagi, K.
    • Nakajima, Y.
    • Sawamoto, T.
    • Nishimura, S.
    • Minamikawa, K.
  • Source: Global Change Biology
  • Volume: 16
  • Issue: 2
  • Year: 2010
  • Summary: Abstract: Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Above-ground fluxes of CH4 and N2O were monitored using an automated closed-chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010mmyr -1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05-1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03-0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3-67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.
  • Authors:
    • Six, J.
    • Lee, J.
    • Temple, S. R.
    • Rolston, D. E.
    • Mitchell, J.
    • Kaffka, S. R.
    • Wolf, A.
    • De Gryze, S.
  • Source: Ecological Applications
  • Volume: 20
  • Issue: 7
  • Year: 2010
  • Summary: Despite the importance of agriculture in California's Central Valley, the potential of alternative management practices to reduce soil greenhouse gas (GHG) emissions has been poorly studied in California. This study aims at (1) calibrating and validating DAYCENT, an ecosystem model, for conventional and alternative cropping systems in California's Central Valley, (2) estimating CO2, N2O and CH4 soil fluxes from these systems, and (3) quantifying the uncertainty around model predictions induced by variability in the input data. The alternative practices considered were cover cropping, organic practices, and conservation tillage. These practices were compared with conventional agricultural management. The crops considered were beans, corn, cotton, safflower, sunflower, tomato, and wheat. Four field sites for which at least five years of measured data were available, were used to calibrate and validate the DAYCENT model. The model was able to predict 86% to 94% of the measured variation in crop yields and 69% to 87% of the measured variation in soil organic carbon (SOC) contents. A Monte-Carlo analysis showed that the predicted variability of SOC contents, crop yields and N2O fluxes was generally smaller than the measured variability of these parameters, in particular for N2O fluxes. Conservation tillage had the smallest potential to reduce GHG emissions among the alternative practices evaluated, with a significant reduction of the net soil GHG fluxes in two of the three sites of 336 ± 47 (mean ± standard error) and 550 ± 123 kg CO2-eq ha-1 yr-1. Cover cropping had a larger potential, with net soil GHG flux reductions of 752 ± 10, 1072 ± 272 and 2201 ± 82 kg CO2-eq ha-1 yr-1. Organic practices had the greatest potential for soil GHG flux reduction, with 4577 ± 272 kg CO2-eq ha-1 yr-1. Annual differences in weather or management conditions contributed more to the variance in annual GHG emissions than soil variability did. We concluded that the DAYCENT model was successful at predicting GHG emissions of different alternative management systems in California, but that a sound error analysis must accompany the predictions to understand the risks and potentials of GHG mitigation through adoption of alternative practices.
  • Authors:
    • Ogle, S.
    • Del Grosso, S.
    • Delgado, J.
  • Source: Nutrient Cycling in Agroecosystems
  • Volume: 86
  • Issue: 3
  • Year: 2010
  • Summary: It is difficult to quantify nitrogen (N) losses from agricultural systems; however, we can use 15N isotopic techniques to conduct site-specific studies to increase our knowledge about N management and fate. Our manuscript analyzes two reviews of selected 15N isotopic studies conducted to monitor N fate. The mechanistic foci of these studies include crop residue exchange and N fate in farming systems. Analysis of the data presented in these studies supports the claim that the average N losses are greater from inorganic N fertilizer inputs than organic crop residue N inputs. Additionally we conducted unique DAYCENT simulations of the effects of crop residue on nitrous oxide (N2O-N) emissions and nitrate (NO3-N) leaching. The simulation evaluations support the crop residue 15N exchange studies and show lower leaching and N2O-N emissions from crop residue sources when compared to N fertilizer. The 15N data suggest that the N in the crop residue pool must be recycled, and that this is a slower and more protected pool when compared to the readily available fertilizer. The results suggest that the Intergovernmental Panel on Climate Change (IPCC) methodology should be reevaluated to determine whether the direct and indirect N2O-N emission coefficients need to be lowered to reflect fewer N2O-N emissions from high C/N crop residue N inputs. The data suggest that accounting for nutrient cycling has implications for public policy associated with the United Nations Framework Convention on Climate Change (UNFCCC) and mitigation of N2O-N emissions from agricultural soils. Additional crop residue exchange studies, field N2O-N and NO3-N leaching and support model evaluations are needed across different worldwide agroecosystems.
  • Authors:
    • Jenkins, W. A.
    • Kramer, R. A.
    • Elsin, Y. K.
  • Source: Journal of Water Resources Planning and Management
  • Volume: 136
  • Year: 2010
  • Authors:
    • Franzluebbers, A. J.
  • Year: 2010
  • Authors:
    • Franzluebbers, A. J.
  • Source: Soil Organic Matter and Nutrient Cycling to Sustain Agriculture in the Southeastern USA
  • Year: 2010