- Authors:
- Wiemken, A.
- Boller, T.
- Mader, P.
- Ineichen, K.
- Sieverding, E.
- Oehl, F.
- Source: Applied and Environmental Microbiology
- Volume: 69
- Issue: 5
- Year: 2003
- Summary: The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the "three-country corner" of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for "AMF trap cultures" with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites ("generalists"); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.
- Authors:
- Bouma, J.
- Marinissen, J.
- Jongmans, A.
- Pulleman, M.
- Source: Soil Use and Management
- Volume: 19
- Issue: 2
- Year: 2003
- Summary: We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming systems were selected, including a conventional and an organic arable system and permanent pasture without tillage. The old pasture represents optimal conditions in terms of soil structure and organic matter inputs and is characterized by high earthworm activity. More than 70 years of different management has caused significant differences in soil properties. SOM content, mineralization, earthworm activity and water-stable aggregation decreased as a result of tillage and arable cropping when compared with pasture, but were significantly greater under organic farming than under conventional farming. Total SOM contents between 0 and 20 cm depth amounted to 15, 24 and 46 g kg-1 for the conventional arable, organic arable and permanent pasture fields, respectively. Although less sensitive to slaking than the conventionally managed field, the soil under organic farming was susceptible to compaction when high pressures were exerted on the soil under wet conditions. The beneficial effects of organic farming are generally associated with soil biochemical properties, but soil physical aspects should also be considered. Depending on soil type and climate, organic farmers need to be careful not to destroy the soil structure, so that they can enjoy maximum advantage from their organic farming systems.
- Authors:
- Paustian, K.
- Eve, M.
- Sperow, M.
- Source: Climatic Change
- Volume: 57
- Issue: 3
- Year: 2003
- Summary: Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr-1, over present rates of 17 Tg C yr-1 (estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129 Mha) would increase soil C sequestration by 47 Tg C yr-1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about 37 Tg C yr-1. Elimination of summer fallow practices and conversion of highly erodible cropland to perennial grass cover could sequester around 20 and 28 Tg C yr-1, respectively. The soil C sequestration potential from including a winter cover crop on annual cropping systems was estimated at 40 Tg C yr-1. All rates were estimated for a fifteen-year projection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr-1) represents about 5% of 1999 total U.S. CO2 emissions or nearly double estimated CO2 emissions from agricultural production (43 Tg C yr-1). For purposes of stabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions (2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.
- Authors:
- Portelli, M.
- Rab, A.
- Mock ,I.
- Knight, A.
- Blott, K.
- Unkovich, M.
- Source: Australian Journal of Agricultural Research
- Volume: 54
- Issue: 8
- Year: 2003
- Summary: Annual crops were grown in alleys between belts of perennial shrubs or trees over 3-4 years at 3 sites across low rainfall (<450 mm) south-eastern Australia. At the two lower rainfall sites (Pallamana and Walpeup), crop grain yields within 2-5 m of shrub belts declined significantly with time, with a reduction equivalent to 45% over 9 m in the final year of cropping. At the third, wetter site (Bridgewater), the reduction in crop grain yields adjacent to tree belts was not significant until the final year of the study (12% over 11 m) when the tree growth rates had increased. The reductions in crop yield were associated with increased competition for water between the shrub or tree belts and the crops once the soil profile immediately below the perennials had dried. At all 3 sites during the establishment year, estimates of water use under the woody perennials were less than under annual crops, but after this, trends in estimates of water use of alley farming systems varied between sites. At Pallamana the perennial shrubs used a large amount of stored soil water in the second summer after establishment, and subsequently were predominantly dependent on rainfall plus what they could scavenge from beneath the adjacent crop. After the establishment year at the Walpeup site, water use under the perennial shrubs was initially 67 mm greater than under the annual crop, declining to be only 24 mm greater in the final year. Under the trees at Bridgewater, water use consistently increased to be 243 mm greater than under the adjacent annual crop by the final year. Although the shrub belts used more water than adjacent crop systems at Walpeup and Pallamana, this was mostly due to the use of stored soil water, and since the belts occupied only 7-18% of the land area, increases in total water use of these alley farming systems compared with conventional crop monocultures were quite small, and in terms of the extent of recharge control this was less than the area of crop yield loss. At the wetter, Bridgewater site, alley farming appeared to be using an increasing amount of water compared with conventional annual cropping systems. Overall, the data support previous work that indicates that in lower rainfall environments (<350 mm), alley farming is likely to be dogged by competition for water between crops and perennials.
- Authors:
- Oenema, O.
- Kuikman, P. J.
- Velthof, G. L.
- Source: Biology and Fertility of Soils
- Volume: 37
- Issue: 4
- Year: 2003
- Summary: Animal manures may differ strongly in composition and as a result may differ in the emission of N2O following application to soil. An incubation study was carried out to assess the effects of type of mineral N fertilizer and manure, application technique and application rate on N2O emission from a sandy soil with low organic matter content. Fluxes of N2O were measured 30 times over a 98-day period. The total N2O emission from mineral N fertilizer ranged from 2.1 to 4.0% of the N applied. High emissions were associated with manures with high contents of inorganic N, easily mineralizable N and easily mineralizable C, such as liquid pig manure (7.3-13.9% of the N applied). The emission from cattle slurries ranged from 1.8 to 3.0% and that of poultry manures from 0.5 to 1.9%. The total N2O emission during the experimental period tended to increase linearly with increasing N application rate of NH4NO3 and liquid pig manure. The N2O emission from surface-applied NH4NO3 was significantly smaller than that following the incorporation of NH4NO3 in the soil. The N2O emission from pig manure placed in a row at 5 cm depth was significantly higher than from surface-application and other techniques in which manure was incorporated in the soil. The results show that modification of the composition and application technique may be tools to mitigate emission of N2O.
- Authors:
- Cotrufo, M. F.
- Peressotti, A.
- Six, J.
- Del Galdo, I.
- Source: Global Change Biology
- Volume: 9
- Issue: 8
- Year: 2003
- Summary: Within the framework of the Kyoto Protocol, the potential mitigation of greenhouse gas emissions by terrestrial ecosystems has placed focus on carbon sequestration following afforestation of former arable land. Central to this soil C sequestration are the dynamics of soil organic matter (SOM). In North Eastern Italy, a mixed deciduous forest was planted on continuous maize field soil with a strong C-4 isotopic C signature 20 years ago. In addition, a continuous maize field and a relic of the original permanent grassland were maintained at the site, thus offering the opportunity to compare the impacts on soil C dynamics by conventional agriculture, afforestation and permanent grassland. Soil samples from the afforested, grassland and agricultured systems were separated in three aggregate size classes, and inter- vs. intra-aggregate particulate organic matter was isolated. All fractions were analyzed for their C content and isotopic signature. The distinct (13) C signature of the C derived from maize vegetation allowed the calculation of proportions of old vs. forest-derived C of the physically defined fractions of the afforested soil. Long-term agricultural use significantly decreased soil C content (-48%), in the top 10 cm, but not SOM aggregation, as compared to permanent grassland. After 20 years, afforestation increased the total amount of soil C by 23% and 6% in the 0-10 and in the 10-30 cm depth layer, respectively. Forest-derived carbon contributed 43% and 31% to the total soil C storage in the afforested systems in the 0-10 and 10-30 cm depths, respectively. Furthermore, afforestation resulted in significant sequestration of new C and stabilization of old C in physically protected SOM fractions, associated with microaggregates (53-250 mum) and siltclay (<53 mum).
- Authors:
- Pu, X. P.
- Kang, M. Y.
- Hu, Z. Z.
- Long, R. J.
- Dong, S. K.
- Source: Grass and Forage Science
- Volume: 58
- Issue: 3
- Year: 2003
- Summary: Abstract The productivity and nutritive value of some cultivated perennial grasses, Bromus inermis (B), Elymus sibricus (S), E. nutans (N), Agropyron cristatum (A), Poa crymophila (P) and mixtures B + N, S + A, B + S + A, S + B + N, N + S + A, B + S + N + A, B + N + A + P, B + S +A + P and S + N + A + P, in the alpine region of the Tibetan Plateau were investigated. Elymus nutans and E. sibricus and the mixtures, B + S + N + A, B + S +A + P and S + N + A + P, were most productive with yields of dry matter (DM) of between 11 000 and 14 000 kg-1 of biomass annually in the second harvest year. Acid-detergent fibre (ADF) concentrations increased (PÂ < 0·05), and crude protein (CP) concentrations and in sacco DM degradability values decreased (PÂ < 0·05) with the maturity of the cultivated grasses. Swards, based on these species and mixtures, have the potential to be the main choices for cultivation in the Tibetan Plateau because they produce more nutrients than other grass species and mixtures. Late August (flowering stage of dominant grasses) is the optimum time for harvesting as the yield of rumen-degradable CP is highest that of DM relatively high and the DM degradability is satisfactory.
- Authors:
- de Caluwe, H.
- Bobbink, R.
- Hefting, M. M.
- Source: Journal of Environmental Quality
- Volume: 32
- Issue: 4
- Year: 2003
- Summary: Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in the Netherlands. Lateral nitrate loading rates were high, up to 470 g N m-2 yr-1. Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha-1 yr-1) compared with the grassland buffer zone (2-4 kg N ha-1 yr-1), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs.
- Authors:
- Dennis, P. F.
- Fukada, T.
- Mühlherr ,I. H.
- Bateman, A. S.
- Hiscock, K. M.
- Source: Environmental Science & Technology
- Volume: 37
- Issue: 16
- Year: 2003
- Summary: Diffuse pollution of groundwater by agriculture has caused elevated concentrations of nitrate (NO3 ) and nitrous oxide (N2O) in regional aquifers. N2O is an important "greenhouse" gas, yet there are few estimates of indirect emissions of N2O from regional aquifers. In this study, high concentrations of N2O (mean 602 nM) were measured in the unconfined Chalk aquifer of eastern England, in an area of intensive agriculture. In contrast, pristine ground waters from upland regions of England and Scotland, with predominantly natural vegetation cover, were found to have much lower concentrations of N2O (mean 27 nM). A positive relationship between N2O and NO3 concentrations and [sigma]18 O-NO3 values of between 3.36 and 16.00‰ suggest that nitrification is the principal source of N2O. A calculated emission factor (EF5-g) of 0.0019 for indirect losses ofN2O from Chalk groundwater is an order of magnitude lower than the value of 0.015 currently used in the Intergovernmental Panel on Climate Change (IPCC) methodology for assessing agricultural emissions. A flux of N2O from the major UK aquifers of 0.04 kg N2O Nha-1 a-1 has been calculated using two approaches and suggests that indirect losses of N2O from regional aquifers are much less significant ( 1%) than direct emissions from agricultural soils.
- Authors:
- Yang, H.
- Walters, D. T.
- Dobermann, A.
- Cassman, K. G.
- Source: Annual Review of Environment and Resources
- Volume: 28
- Issue: 1
- Year: 2003
- Summary: Agriculture is a resource-intensive enterprise. The manner in which food production systems utilize resources has a large influence on environmental quality. To evaluate prospects for conserving natural resources while meeting increased demand for cereals, we interpret recent trends and future trajectories in crop yields, land and nitrogen fertilizer use, carbon sequestration, and greenhouse gas emissions to identify key issues and challenges. Based on this assessment, we conclude that avoiding expansion of cultivation into natural ecosystems, increased nitrogen use efficiency, and improved soil quality are pivotal components of a sustainable agriculture that meets human needs and protects natural resources. To achieve this outcome will depend on raising the yield potential and closing existing yield gaps of the major cereal crops to avoid yield stagnation in some of the world's most productive systems. Recent trends suggest, however, that increasing crop yield potential is a formidable scientific challenge that has proven to be an elusive goal.