• Authors:
    • Paustian, K.
    • Smith, G. R.
    • Conant, R. T.
  • Source: Journal of Environmental Quality
  • Volume: 32
  • Issue: 1
  • Year: 2003
  • Summary: The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.
  • Authors:
    • Cadisch, G.
    • Hartwig, U. A.
    • Richter, M.
    • Baggs, E. M.
  • Source: Global Change Biology
  • Volume: 9
  • Issue: 8
  • Year: 2003
  • Summary: Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 [micro]L L-1) and elevated (600 [micro]L L-1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m-2 yr-1) and low (14 g N m-2 yr-1) rates of fertilizer application, split over 5 re-growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m-2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2 Lolium swards were attributed to greater below-ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O-N m-2 yr-1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2 Lolium swards measured during the first two re-growths (April-June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re-growths (April-June 2001) and the third, fourth and fifth re-growths (late June-October 2000), with available soil NO3- and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short-term measurements to predict long-term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.
  • Authors:
    • Cadisch, G.
    • Cook, H.
    • Regar, A.
    • Pihlatie, M.
    • Stevenson, M.
    • Baggs, E. M.
  • Source: Plant and Soil
  • Volume: 254
  • Issue: 2
  • Year: 2003
  • Summary: Emissions of N2O were measured following combined applications of inorganic N fertiliser and crop residues to a silt loam soil in S. E. England, UK. Effects of cultivation technique and residue application on N2O emissions were examined over 2 years. N2O emissions were increased in the presence of residues and were further increased where NH4NO3 fertiliser (200 kg N ha(-1)) was applied. Large fluxes of N2O were measured from the zero till treatments after residue and fertiliser application, with 2.5 kg N2O- N ha(-1) measured over the first 23 days after application of fertiliser in combination with rye ( Secale cereale) residues under zero tillage. CO2 emissions were larger in the zero till than in the conventional till treatments. A significant tillage/residue interaction was found. Highest emissions were measured from the conventionally tilled bean ( Vicia faba) (1.0 kg N2O- N ha(-1) emitted over 65 days) and zero tilled rye (3.5 kg N2O-N ha(-1) over 65 days) treatments. This was attributed to rapid release of N following incorporation of bean residues in the conventionally tilled treatments, and availability of readily degradable C from the rye in the presence of anaerobic conditions under the mulch in the zero tilled treatments. Measurement of N-15-N2O emission following application of N-15-labelled fertiliser to microplots indicated that surface mulching of residues in zero till treatments resulted in a greater proportion of fertiliser N being lost as N2O than with incorporation of residues. Combined applications of N-15 fertiliser and bean residues resulted in higher or lower emissions, depending on cultivation technique, when compared with the sum of N2O from single applications. Such interactions have important implications for mitigation of N2O from agricultural soils.
  • Authors:
    • Thornton, P. K.
    • Jones, P. G.
  • Source: Conservation Ecology
  • Volume: 5
  • Issue: 2
  • Year: 2003
  • Summary: Making decisions in natural resource management involves an understanding of the risk and uncertainty of the outcomes, such as crop failure or cattle starvation, and of the normal spread of the expected production. Hedging against poor outcomes often means lack of investment and slow adoption of new methods. At the household level, production instability can have serious effects on income and food security. At the national level, it can have social and economic impacts that may affect all sectors of society. Crop models such as CERES-Maize are excellent tools for assessing weather-related production variability. WATBAL is a water balance model that can provide robust estimates of the potential growing days for a pasture. These models require large quantities of daily weather data that are rarely available. MarkSim is an application for generating synthetic daily weather files by estimating the third-order Markov model parameters from interpolated climate surfaces. The models can then be run for each distinct point on the map. This paper examines the growth of maize and pasture in dryland agriculture in southern Africa (includes the southern part of Tanzania, Malawi, much of Mozambique, and all of Zimbabwe, and extends west from the Indian Ocean to include Zambia, the southeastern part of the Democratic Republic of Congo and small portions of Angola). Weather simulators produce independent estimates for each point on the map; however, we know that a spatial coherence of weather exists. We investigated a method of incorporating spatial coherence into MarkSim and show that it increases the variance of production. This means that all of the farmers in a coherent area share poor yields, with important consequences for food security, markets, transport, and shared grazing lands. The long-term aspects of risk are associated with global climate change. We used the results of a global circulation model to extrapolate to the year 2055. We found that low maize yields would become more likely in the marginal areas, whereas they may actually increase in some areas. The same trend was found with pasture growth. We outline areas where further work is required before these tools and methods can address natural resource management problems in a comprehensive manner at local community and policy levels.
  • Authors:
    • Pringle, H. C.,III
    • Martin, S. W.
  • Source: Journal of Cotton Science
  • Volume: 7
  • Issue: 4
  • Year: 2003
  • Summary: Deep tillage at a 45 angle has been a recommended practice since the mid-1970s on most Mississippi Delta cotton soils. This practice disrupts hard pans and allows deeper wetting of the soil profile with winter rainfall. The newest deep tillage "subsoiler" designs (Paratill, low-till parabolic) have the shank extending through the soil at an angle, thereby reducing soil surface disturbance and allowing the subsoiler to run under the row in the direction of the row, without the shank passing directly through the drill. Both centre pivot and furrow irrigation of cotton has expanded since the early 1980s. With intermittent rainfall, irrigation is supplemental and represents a type of insurance against yield uncertainty during extended periods of water deficit. Field experiments were conducted at Stoneville, Mississippi, USA, during 1994-2001, to determine the long-term effects of sprinkler irrigation and in-row subsoil tillage on cotton yield and economic return of cotton cultivars DES119 (1994-95), SG125 (1996-99) and SG747 (2000-01) on silt loam soil from 1994 to 2001. In-row subsoil tillage was performed with a low-till parabolic subsoiler and irrigation was applied with an overhead lateral-move sprinkler irrigation system. Production costs were calculated for direct costs and total specified costs excluding land rent, general farm overheads and returns to management. Average net returns were calculated as the difference between income at the cotton loan rate of $1.15 per kg of lint and total specified costs. Returns were maximized with either the irrigated, non-subsoiled or the non-irrigated, subsoiled environments. Lower returns occurred in the irrigated, subsoiled environment due to the higher costs and lack of yield increase.
  • Authors:
    • Jones, R. H.
    • Leonard, B. R.
    • Gore, J.
  • Source: Environmental Entomology
  • Volume: 32
  • Issue: 1
  • Year: 2003
  • Summary: Field and laboratory studies evaluated the influence of selected crop hosts on Helicoverpa zea population dynamics in relation to genetically engineered Bt (Bollgard) and non-Bt cottons. Host specific H. zea colonies were initiated with a colony originally collected from sweetcorn. The colony was allowed to complete one generation on meridic diet then split into cohorts and allowed to complete one generation on field maize, grain sorghum, soyabean, cotton, or meridic diet in individual 29.5 ml plastic cups. During the first part of the study, larval developmental times, pupal weights, and survival were measured. H. zea survival was higher on meridic diet and grain sorghum than on soyabean and cotton. The development of H. zea larvae was faster on field maize than the other larval diets. Also, H. zea required a longer period of time to complete development on cotton than on the other hosts. Pupal weights were higher on meridic diet than the plant hosts. Pupal weights of H. zea that completed larval stadia on cotton were lower than on the other larval diets. Neonates (F 1) from each of the host specific colonies (200 per colony) were exposed to Bt and non-Bt cottons. Mortality of second generation H. zea on non-Bt and Bt cottons was measured at 96 h. H. zea larvae from the cotton colony had higher mortality on non-Bt cotton than the other host specific colonies except the grain sorghum colony. On Bt cotton, larvae from the maize colony had a higher level of mortality than larvae from the soyabean and grain sorghum colonies. These data provide valuable information for evaluating the contribution of cultivated hosts as additional, alternative refugia in Bt-cotton resistance management plans.
  • Authors:
    • Felton, W.
    • Haigh, B.
  • Source: Update of research in progress at the Tamworth Agricultural Institute 2002
  • Year: 2003
  • Summary: Crop growth rate and weed competition were studied in New South Wales, Australia during 2002 using reflectance sensors. Seeds of wheat cv. Sunstate, chickpea cv. Howzat, faba bean cv. Fiord and rape cv. Oscar were sown at 40, 70, 100 and 3 kg/ha, respectively. Two reflectance sensors mounted on a small tractor were used to collect data across each plot every two weeks (45-129 days after sowing). Wheat recorded the greatest biomass, yield and water consumption, whereas chickpea recorded the highest harvest index and lowest water consumption. The rate of crop development was greatest in wheat and lowest in chickpea. The number of days required to produce 1000 kg/ha of shoot dry matter was 92, 100, 102 and 11 days after sowing for wheat, faba bean, rape and chickpea, respectively. Reflectance measurements were also used to evaluate the potential of wheat, triticale and barley as 'mimic weeds' against wild oat [ Avena fatua] in chickpea. Reflectance estimates were made at 51, 62, 84, 100 and 120 days after sowing. The 'mimic weeds' established faster than wild oat. The density of wild oat was lower than that of the mimic weeds, although none of the weeds achieved the target density of 81 weeds/m 2. The similar linear relationships with regard to the effects of weed biomass on crop yield for wild oat and 'mimic weeds' indicated that the latter can be used in weed studies instead of the actual weed. At low densities, wheat and barley were the most competitive. Triticale and wild oat exhibited similar competitive ability.
  • Authors:
    • Featherstone, A. M.
    • Langemeier, M. R.
    • Abdulkadri, A. O.
  • Source: Applied Economics
  • Volume: 35
  • Issue: 7
  • Year: 2003
  • Summary: The risk attitudes of dryland wheat, irrigated maize, and dairy producers in Kansas, USA, are examined using the nonlinear mean-standard deviation approach. Observations on farm characteristics, obtained from 1993-97, and the statewide market year average prices for wheat and maize from 1950-97, are used. Results of analyses indicated that dryland wheat and dairy producers are characterized by increasing absolute and increasing relative risk aversion while irrigated maize producers are characterized by constant absolute and increasing relative risk aversion. Both crop enterprises exhibited constant returns to scale technology while the dairy enterprise exhibited decreasing returns to scale. Gross farm income was significant and positively related to relative risk aversion.
  • Authors:
    • Lokaj, G. R. W.
    • Majek, B. A.
    • Belding, R. D.
    • Hammerstedt, J.
    • Ayeni, A. O.
  • Source: HortTechnology
  • Volume: 13
  • Issue: 2
  • Year: 2003
  • Summary: Peach ( Prunus persica cv. Candor) trees were established and grown from 1996 to 1999 at the Rutgers Agricultural Research and Extension Center, Bridgeton, New Jersey, USA, to compare their performance under four methods of orchard floor preparation: flat no-till, flat cultivated, mound unmulched, and mound mulched orchard floors. The experimental site was flat and the soil was a well-drained Aura gravelly sandy loam (61% sand, 31% silt and 8% clay) with a pH of 6.5, cation exchange capacity of 5.7, and organic matter content of 2.0%. Soil moisture holding capacity and gas exchange capacity determine the efficacy of mounding in peach orchards. Under these conditions, the method of orchard floor preparation had no effect on peach tree trunk cross-sectional area, fruit number per tree, fruit size and yield. Thus, without irrigation, there was no advantage to the early performance of peach trees associated with orchard floor mounding on Aura gravelly sandy loam when situated on a flat terrain.
  • Authors:
    • Post, W. M.
    • West, T. O.
  • Source: Soil Science Society of America Journal
  • Volume: 66
  • Issue: 6
  • Year: 2002
  • Summary: Changes agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 +/- 14 g C m(-2) yr(-1), excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 +/- 12 g C m(-2) yr(-1), excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine mar L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.