- Authors:
- Rayar, A. J.
- Senthivel, T.
- Kannan, N.
- Frank, M.
- Source: Agricultural Water Management
- Volume: 97
- Issue: 5
- Year: 2010
- Summary: The study explores the potential of introducing an additional crop during dry season in Rwanda, comparing the efficiency of in situ soil moisture conservation techniques to sustain rain-fed agriculture. Comparative study of in situ soil moisture conservation techniques in bench terraces and unterraced field with maize crop had been conducted from June 2007 to October 2007. Bench terrace increased the average soil moisture content in 90 cm soil depth by more than 50% than that of unterraced land. Within the bench terraced field compartment bund and ridges and furrows increased soil moisture by 19.5% and 27.9% higher than plain bed. In terms of efficiency of moisture conservation, ridges and furrows performed well with 85.8% followed by compartment bund with 75.9% in terraced field. Unterraced field conserved moisture very poorly with 13.9% efficiency inferring importance of bench terraces for soil moisture conservation. No maize grain yield was recorded in all the techniques because soil water depleted to 60% and above from the beginning of the cropping period inferring the need of supplementary irrigation. Analysis of rainfall, crop water demand and in situ moisture conservation reveals exciting opportunities for water productivity enhancements by integrating components of water management within the context of rain-fed farming through water harvesting and supplemental or microirrigation for dry spell mitigation. Detailed analysis is needed for feasibility of lift irrigation with different crops under different altitudes to derive suitable policy for hill land irrigation.
- Authors:
- Kumar, S. N.
- Byjesh, K.
- Aggarwal, P. K.
- Source: Mitigation and Adaptation Strategies for Global Change
- Volume: 15
- Issue: 5
- Year: 2010
- Summary: Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize ( Zea mays L.), the third most important cereal crop in India, has a major role to play in country's food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO 2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.
- Authors:
- Kalungu, J. W.
- Monteiro, R. O. C.
- Coelho, R. D.
- Source: Ciência Rural
- Volume: 40
- Issue: 10
- Year: 2010
- Summary: This paper reviews various irrigation technologies in both South Africa and Kenya that enable improvements in their socio-economic conditions. The two countries are located in semi-arid areas that experience extreme fluctuations in the availability of rain water for plant growth. Population growth exceeds the ability to produce food in numerous countries around the world and the two countries are not an exception. This experiment examined the constraints that farmers face and the role of government and nongovernmental organization in the uptake of modern technologies for irrigation. Detailed mechanisms and options to secure sustainable irrigation which are economically viable are considered. Despite the higher production of cereals and grains, fruits, and flowers also thrive in the two countries. Total irrigated area, crops grown and irrigation systems used in the two countries are discussed.
- Authors:
- Source: Soil Solutions for a Changing World
- Year: 2010
- Summary: This study aimed to assess the feasibility of predicting ranges in N2O emission with a boundary line
approach using a few key driving factors. Intact soil cores (9 cm dia. and ~20 cm in depth) were collected
from pasture, cereal cropping and sugarcane lands and incubated at various temperature and moisture
conditions after addition of different forms of mineral nitrogen (NH4+ and NO3⎯). The pasture and sugarcane
soils showed greater N2O production capacity than the cropping soils with similar mineral N and organic C
contents or under similar temperature and water filled pore space (WFPS%), and thus different model
parameters need to be used. The N2O emission rates were classified into three ranges: low (< 16 g
N2O/ha/day), medium (16 –160 g N2O/ha/day) and high (> 160 g N2O/ha/day). The results indicated that
N2O emissions were in the low range when soil mineral N content was below 10 mg N/kg for the cropping
soils and below 2 mg N/kg for the pasture and sugarcane soils. In soils with mineral N content exceeding the
above thresholds, the emission rates were largely regulated by soil temperature and WFPS and the emission
ranges could be estimated using linear boundary line models that incorporated both temperature and WFPS.
Using these key driving factors (land use, temperature, WFPS and mineral N content), the boundary line
models correctly estimated the emission ranges for 85% of the 247 data points for the cropping soils and
59% of the 271 data points for the pasture and sugarcane soils. In view of the fact that N2O emissions from
soil are often very variable and difficult to predict and that the soil and environmental conditions applied in
this study differed substantially, the above results suggested that, in terms of accuracy and feasibility, the
boundary line approach provides a simple and practical alternative to the use of a single emission factor and
more complex process-based models.
- Authors:
- Renouf, M. A.
- Wegener, M. K.
- Pagan, R. J.
- Source: The International Journal of Life Cycle Assessment
- Volume: 15
- Issue: 9
- Year: 2010
- Authors:
- Piccolo, M. de C.
- Feigl, B. J.
- Cerri, C. C.
- Cerri, C. E. P.
- Frazao, L. A.
- Source: Agriculture, Ecosystems & Environment
- Volume: 135
- Issue: 3
- Year: 2010
- Summary: The Brazilian Cerrado soils were incorporated into the agricultural production process in the 1970s. The introduction of pastures and/or annual crops utilizing different management systems produced changes in the dynamics of soil organic matter. This study evaluated the microbial attributes of a Typic Quartzipsamment (Arenosols in FAO classification) in native vegetation, pastures, and soybean cultivation under conventional (CT) and no-till (NT) systems. The soil samples (0-5, 5-10 and 10-20 cm layers) were collected in July 2005 and February 2006 from different systems: native Cerrado (CE), CT for 4 years with soybean (CT4 S), CT for 4 years with soybean in rotation with millet (CT4 S/M), an area that has been under pasture for 22 years (PA22), and an area that remained under pasture for 13 years, followed by NT with soybean in rotation with millet for 5 years (NT5). Soil inorganic N (nitrate and ammonium), microbial C and N and basal respiration were determined. The soil metabolic quotient (qCO 2) and the C mic:C org ratios were calculated. The predominant form of inorganic N in the native Cerrado (CE) and in the pasture area (PA22) was ammonium, while the conventional system (CT4 S/M) and no-till system (NT5) areas presented higher nitrogen availability for crops in the form of nitrate. The microbial C and N concentrations increased in the wet season, and the highest values were found in the Cerrado (CE) and in pasture (PA22) areas, where the permanent soil cover and the lack of soil disturbance by agricultural practices allowed more favorable conditions for microbial development. The CT4 S area presented the highest qCO 2 index and the lowest C mic:C total ratio, indicating that the conversion of total carbon into microbial carbon is less efficient in this system. Since sandy soils are more susceptible to degradation, the use of more conservationist management systems promotes more favorable conditions to microbial development and maintenance.
- Authors:
- van Groenigen, K. J.
- van Kessel, C.
- Oenema, O.
- Velthof, G. L.
- van Groenigen, J. W.
- Source: European Journal of Soil Science
- Volume: 61
- Issue: 6
- Year: 2010
- Summary: Agricultural soils are the main anthropogenic source of nitrous oxide (N2O), largely because of nitrogen (N) fertilizer use. Commonly, N2O emissions are expressed as a function of N application rate. This suggests that smaller fertilizer applications always lead to smaller N2O emissions. Here we argue that, because of global demand for agricultural products, agronomic conditions should be included when assessing N2O emissions. Expressing N2O emissions in relation to crop productivity (expressed as above-ground N uptake: "yield-scaled N2O emissions") can express the N2O efficiency of a cropping system. We show how conventional relationships between N application rate, N uptake and N2O emissions can result in minimal yield-scaled N2O emissions at intermediate fertilizer-N rates. Key findings of a meta-analysis on yield-scaled N2O emissions by non-leguminous annual crops (19 independent studies and 147 data points) revealed that yield-scaled N2O emissions were smallest (8.4 g N2O-N kg-1N uptake) at application rates of approximately 180-190 kg Nha-1 and increased sharply after that (26.8 g N2O-N kg-1 N uptake at 301 kg N ha-1). If the above-ground N surplus was equal to or smaller than zero, yield-scaled N2O emissions remained stable and relatively small. At an N surplus of 90 kg N ha-1 yield-scaled emissions increased threefold. Furthermore, a negative relation between N use efficiency and yield-scaled N2O emissions was found. Therefore, we argue that agricultural management practices to reduce N2O emissions should focus on optimizing fertilizer-N use efficiency under median rates of N input, rather than on minimizing N application rates.
- Authors:
- Liang,Biqing
- Lehmann,Johannes
- Sohi,Saran P.
- Thies,Janice E.
- Luizão,Flavio J.
- Trujillo,Lucerina
- Gaunt,John
- Solomon,Dawit
- Grossman,Julie
- Neves,Eduardo G.
- O'Neill,Brendan
- Source: Organic Geochemistry
- Volume: 41
- Issue: 2
- Year: 2010
- Summary: Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decomposition is increased by AOM. BC-rich Anthrosols and BC-poor adjacent soils from the Central Amazon (Brazil) were incubated for 532 days either with or without addition of 13C-isotopically different plant residue. Total C mineralization from the BC-rich Anthrosols with AOM was 25.5% (P < 0.05) lower than with mineralization from the BC-poor adjacent soils. The AOM contributed to a significantly (P < 0.05) higher proportion to the total C mineralized in the BC-rich Anthrosols (91–92%) than the BC-poor adjacent soils (69–80%). The AOM was incorporated more rapidly in BC-rich than BC-poor soils from the separated free light fraction through the intra-aggregate light fraction into the stable organo-mineral fraction and up to 340% more AOM was found in the organo-mineral fraction. This more rapid stabilization was observed despite a significantly (P < 0.05) lower metabolic quotient for BC-rich Anthrosols. The microbial biomass (MB) was up to 125% greater (P < 0.05) in BC-rich Anthrosols than BC-poor adjacent soils. To account for increased MB adsorption onto BC during fumigation extraction, a correction factor was developed via addition of a 13C-enriched microbial culture. The recovery was found to be 21–41% lower (P < 0.05) for BC-rich than BC-poor soils due to re-adsorption of MB onto BC. Mineralization of native soil C was enhanced to a significantly greater degree in BC-poor adjacent soils compared to BC-rich Anthrosols as a result of AOM. No positive priming by way of cometabolism due to AOM could be found for aged BC in the soils.
- Authors:
- Sun, O. J.
- Wang, E. L.
- Luo, Z. K.
- Source: Geoderma
- Volume: 155
- Issue: 3-4
- Year: 2010
- Summary: Soil is the largest reservoir of carbon (C) in the terrestrial biosphere and a slight variation in this pool could lead to Substantial changes in the atmospheric CO2 concentration, thus impact significantly on the global climate. Cultivation of natural ecosystems has led to marked decline in soil C storage, such that conservation agricultural practices (CAPs) are widely recommended as options to increase soil C storage, thereby mitigating climate change. In this review, we summarise soil C change as a result of cultivation worldwide and in Australia. We then combine the available data to examine the effects of adopting CAPs on soil C dynamics in Australian agro-ecosystems. Finally, we discuss the future research priorities related to soil C dynamics. The available data show that in Australian agro-ecosystems, cultivation has led to C loss for more than 40 years, with a total C loss of approximately 51% in the surface 0.1 m of soil. Adoption of CAPs generally increased soil C. Introducing perennial plants into rotation had the greatest potential to increase soil C by 18% compared with other CAPs. However, the same CAPS Could result in different outcomes on soil C under different climate and soil combinations. No consistent trend of increase in soil C was found with the duration of CAP applications, implying that questions remain regarding long-term impact of CAPs. Most of the available data in Australia are limited to the surface 0.1 to 0.3 m of soil. Efforts are needed to investigate soil C change in deeper soil layers in Order to understand the impact of crop root growth and various agricultural practices on C distribution in soil profile. Elevated atmospheric CO2 concentration, global warming and rainfall change Could all alter the C balance of agricultural soils. Because of the complexity of soil C response to management and environmental factors, a system modelling approach Supported by sound experimental data would provide the most effective means to analyse the impact of different management practices and future climate change on soil C dynamics. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
- Authors:
- Batlle-Bayer, L.
- Batjes, N. H.
- Bindraban, P. S.
- Source: Agriculture, Ecosystems & Environment
- Volume: 137
- Issue: 1-2
- Year: 2010
- Summary: This paper reviews current knowledge on changes in carbon stocks upon land use conversion in the Brazilian Cerrado. First, we briefly characterize the savanna ecosystem and summarize the main published data on C stocks under natural conditions. The effects of increased land use pressure in the Cerrado and current uncertainties of estimations of changes in land cover and land use are reviewed next. Thereafter, we focus on soil organic carbon (SOC) dynamics due to changes in land use, particularly conversion to pastures and soybean-based cropping systems, and effects of management practices such as soil fertilization, crop rotations and tillage practices. Most studies considered here suggest that more intensive agriculture, which include no-till practices and the implementation of best or recommended management practices (RMP), reduces SOC losses after land use conversion from conventional tillage-based, monocropping systems; however, these studies focussed on the first 0.3 m of soil, or less, and seldom considered full carbon accounting. To better estimate possible global warming mitigation with agriculture in the Cerrado more comprehensive studies are needed that analyse fluxes of the biogenic greenhouse gases (GHG; CO 2, N 2O and CH 4) to determine the net global warming potential (GWP). Follow up studies should include the application of an integrated modelling system, comprised of a Geographic Information System (GIS) linked to dynamic modelling tools, to analyse SOC dynamics and make projections for possible changes in net C flows in the Cerrado region upon defined changes in soil use and management.