- Authors:
- Dresboll, D. B.
- Thorup-Kristensen, K.
- Kristensen, H. L.
- Source: European Journal of Agronomy
- Volume: 37
- Issue: 1
- Year: 2012
- Summary: One of the core ideas behind organic production is that cropping systems should be less dependent on import of resources, and minimize negative effects on the surrounding environment compared to conventional production. However, even when clearly complying with regulations for organic production, it is not always obvious that these goals are reached. As an example, strong dependence on import of manure is often seen in current organic production, especially in systems producing high value crops such as vegetable crops. The aim of the present study was to test novel approaches to organic rotations, designed to reduce the reliance on import of external resources significantly. We compared a conventional system (C) and an organic system relying on manure import for soil fertility (O1) to two novel systems (O2 and O3) all based on the same crop rotation. The O2 and O3 systems represented new versions of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity and natural pest regulation in the crops. Reliance on resource import to the systems differed, with average annual import of nitrogen fertilizers of 149, 85, 25 and 25 kg N ha(-1) in the C, O1, O2 and O3 systems, respectively. As expected, the crop yields were lower in the organic system. It differed strongly among crop species, but on average the organic crops yielded c. 82% of conventional yields in all three organic systems, when calculated based on the area actually grown with the main crops. In the O3 system some of the area of the vegetable fields was allocated to intercrops, so vegetable yields calculated based on total land area was only 63% of conventional yields. Differences in quality parameters of the harvested crops, i.e. nutrient content, dry matter content or damages by pests or diseases were few and not systematic, whereas clear effects on nutrient balances and nitrogen leaching indicators were found. Root growth of all crops was studied in the C and O2 system, but only few effects of cropping system on root growth was observed. However, the addition of green manures to the systems almost doubled the average soil exploration by active root systems during the rotation from only 21% in C to 38% in O2 when measured to 2.4m depth. This relates well to the observed differences in subsoil inorganic N content (N-inorg. 1-2 m depth) across the whole rotation (74 and 61 kg N ha(-1) in C and O1 vs. only 22 and 21 kg N ha(-1) in O2 and O3), indicating a strongly reduced N leaching loss in the two systems based on fertility building crops (green manures and catch crops). In short, the main distinctions were not observed between organic and conventional systems (i.e. C vs. O1, O2 and O3). but between systems based mainly on nutrient import vs. systems based mainly on fertility building crops (C and O1 vs. O2 and O3). (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Henriksen, U.
- Shalatet, S. G. S.
- Holm, J. K.
- Ahrenfeldt, J.
- Muller-Stover, D.
- Hauggaard-Nielsen, H.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 94
- Issue: 2-3
- Year: 2012
- Summary: Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out to investigate the effects of the ashes on soil microbiological and chemical properties and on the response of the three crops. The ash treatments were compared with a control treatment that received only nitrogen, magnesium, and sulphur (CO) and a fully fertilized control (COPK). Soil microbial parameters were not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects on soil nutrient levels or on crop biomass. We conclude from the results of this study, that-depending on the feedstock used-ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil properties.
- Authors:
- Birkmose, T. S.
- Hansen, M. N.
- Nyord, T.
- Source: Agriculture, Ecosystems & Environment
- Volume: 160
- Year: 2012
- Summary: To provide better advice to farmers and authorities on the most efficient way to reduce ammonia volatilisation from slurry applied to fields with standing crops, various treatments and injection methods were tested in field trials. In six separate experiments conducted at Research Centre Foulum, Denmark from 2007 to 2009, pig slurry was applied to winter wheat ( Triticum aestivum L.) to determine how anaerobically digestion, solid-liquid separation of slurry and different soil injection techniques influence crop yield and ammonia emissions (NH 3). The NH 3 emission was measured by either a wind-tunnel method or by a micro-meteorological mass balance method. Both injection and solid-liquid separation were found to reduce NH 3 emission. The emission from the separated slurry did not include the emission from the solid fraction. Most effective injection techniques were found to be a winged tine or a combination of discs and a tine, which reduced NH 3 emission from approximately 20% (surface band spreading) to approximately 5% of applied Total Ammoniacal Nitrogen (TAN). The NH 3 emission from surface-applied anaerobically digested slurry was found to be almost twice that from surface-applied untreated slurry. Injection did not affect yields significantly compared with surface application in any of the experiments, but did result in a significantly increased protein content in grains compared to band application, which increased the nitrogen utilisation of slurry nitrogen. Of the techniques tested, soil injection and solid-liquid separation reduced NH 3 emissions most effectively.
- Authors:
- Mikkelsen, T. N.
- Pedersen, J. K.
- Larsen, K. S.
- Michelsen, A.
- Ibrom, A.
- Linden, L. van der
- Selsted, M. B.
- Pilegaard, K.
- Beier, C.
- Ambus, P.
- Source: Global Change Biology
- Volume: 18
- Issue: 4
- Year: 2012
- Summary: This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration ( RS ) in a Danish Calluna-Deschampsia-heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO 2 (+130 ppm), raised soil temperature (+0.4°C) and extended summer drought (5-8% precipitation exclusion) was established in 2005. The average RS , observed in the control over 3 years of measurements (1.7 mol CO 2 m -2 sec -1), increased 38% under elevated CO 2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer drought decreased RS by 14%, while elevated soil temperature did not affect RS overall. A significant interaction between elevated temperature and drought resulted in further reduction of RS when these treatments were combined. A detailed analysis of short-term RS dynamics associated with drought periods showed that RS was reduced by ~50% and was strongly correlated with soil moisture during these events. Recovery of RS to pre-drought levels occurred within 2 weeks of rewetting; however, unexpected drought effects were observed several months after summer drought treatment in 2 of the 3 years, possibly due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS . The model predicted annual sums of RS in 2006 and 2007, in the control, were 672 and 719 g C m -2 y -1, respectively. For the full treatment combination, i.e. the future climate scenario, the model predicted that soil respiratory C losses would increase by ~21% (140-150 g C m -2 y -1). Therefore, in the future climate, stimulation of C storage in plant biomass and litter must be in excess of 21% for this ecosystem to not suffer a reduction in net ecosystem exchange.
- Authors:
- Schmidt, J. E.
- Thomsen, S. T.
- Jensen, M.
- Heiske, S.
- Hauggaard-Nielsen, H.
- Carter, M. S.
- Johansen, A.
- Ambus, P.
- Source: GCB Bioenergy
- Volume: 4
- Issue: 4
- Year: 2012
- Summary: One way of reducing the emissions of fossil fuel-derived carbon dioxide (CO2) is to replace fossil fuels with biofuels produced from agricultural biomasses or residuals. However, cultivation of soils results in emission of other greenhouse gases (GHGs), especially nitrous oxide (N2O). Previous studies on biofuel production systems showed that emissions of N2O may counterbalance a substantial part of the global warming reduction, which is achieved by fossil fuel displacement. In this study, we related measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which was obtained when agricultural biomasses were used for biofuel production. The analysis included five organically managed feedstocks (viz. dried straw of sole cropped rye, sole cropped vetch and intercropped ryevetch, as well as fresh grassclover and whole crop maize) and three scenarios for conversion of biomass into biofuel. The scenarios were (i) bioethanol, (ii) biogas and (iii) coproduction of bioethanol and biogas. In the last scenario, the biomass was first used for bioethanol fermentation and subsequently the effluent from this process was utilized for biogas production. The net GHG reduction was calculated as the avoided fossil fuel-derived CO2, where the N2O emission was subtracted. This value did not account for fossil fuel-derived CO2 emissions from farm machinery and during conversion processes that turn biomass into biofuel. The greatest net GHG reduction, corresponding to 700800 g CO2 m(-2), was obtained by biogas production or coproduction of bioethanol and biogas on either fresh grassclover or whole crop maize. In contrast, biofuel production based on lignocellulosic crop residues (i.e. rye and vetch straw) provided considerably lower net GHG reductions (=215 g CO2 m(-2)), and even negative numbers sometimes. No GHG benefit was achieved by fertilizing the maize crop because the extra crop yield, and thereby increased biofuel production, was offset by enhanced N2O emissions.
- Authors:
- Zegada-Lizarazu, W.
- Walter, K.
- Valentine, J.
- Djomo, S. Njakou
- Monti, A.
- Mander, U.
- Lanigan, G. J.
- Jones, M. B.
- Hyvonen, N.
- Freibauer, A.
- Flessa, H.
- Drewer, J.
- Carter, M. S.
- Skiba, U.
- Hastings, A.
- Osborne, B.
- Don, A.
- Zenone, T.
- Source: GCB Bioenergy
- Volume: 4
- Issue: 4
- Year: 2012
- Summary: Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second-generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N-use efficiency, due to effective N-recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha(-1) yr(-1) for poplar and willow and 0.66 Mg soil C ha(-1) yr(-1) for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land-use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.
- Authors:
- Wenzel, H.
- Olesen, J.
- Petersen, B.
- Jorgensen, U.
- Hamelin, L.
- Source: Global Change Biology Bioenergy
- Volume: 4
- Issue: 6
- Year: 2012
- Summary: This paper addresses the conversion of Danish agricultural land from food/feed crops to energy crops. To this end, a life cycle inventory, which relates the input and output flows from and to the environment of 528 different crop systems, is built and described. This includes seven crops (annuals and perennials), two soil types (sandy loam and sand), two climate types (wet and dry), three initial soil carbon level (high, average, low), two time horizons for soil carbon changes (20 and 100 years), two residues management practices (removal and incorporation into soil) as well as three soil carbon turnover rate reductions in response to the absence of tillage for some perennial crops (0%, 25%, 50%). For all crop systems, nutrient balances, balances between above- and below-ground residues, soil carbon changes, biogenic carbon dioxide flows, emissions of nitrogen compounds and losses of macro- and micronutrients are presented. The inventory results highlight Miscanthus as a promising energy crop, indicating it presents the lowest emissions of nitrogen compounds, the highest amount of carbon dioxide sequestrated from the atmosphere, a relatively high carbon turnover efficiency and allows to increase soil organic carbon. Results also show that the magnitude of these benefits depends on the harvest season, soil types and climatic conditions. Inventory results further highlight winter wheat as the only annual crop where straw removal for bioenergy may be sustainable, being the only annual crop not involving losses of soil organic carbon as a result of harvesting the straw. This, however, is conditional to manure application, and is only true on sandy soils.
- Authors:
- Petersen, S. O.
- Mutegi, J. K.
- Hansen, E. M.
- Munkholm, L. J.
- Source: Soil Biology and Biochemistry
- Volume: 43
- Issue: 7
- Year: 2011
- Summary: Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RI) and direct drilling (DD), all with (+CC) or without (-CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 mu g N m(-2) h(-1) except in the CT + CC treatment, where emissions peaked at 900 mu g N M-2 h(-1). Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha(-1). A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RI and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.
- Authors:
- Dejoux, J. F.
- Aubinet, M.
- Bernhofer, C.
- Bodson, B.
- Buchmann, N.
- Carrara, A.
- Cellier, P.
- Di Tommasi, P.
- Elbers, J. A.
- Eugster, W.
- Gruenwald, T.
- Jacobs, C. M. J.
- Jans, W. W. P.
- Jones, M.
- Kutsch, W.
- Lanigan, G.
- Magliulo, E.
- Marloie, O.
- Moors, E. J.
- Moureaux, C.
- Olioso, A.
- Osborne, B.
- Sanz, M. J.
- Saunders, M.
- Smith, P.
- Soegaard, H.
- Wattenbach, M.
- Ceschia, E.
- Beziat, P.
- Source: Agriculture, Ecosystems & Environment
- Volume: 139
- Issue: 3
- Year: 2010
- Summary: The greenhouse gas budgets of 15 European crop sites covering a large climatic gradient and corresponding to 41 site-years were estimated. The sites included a wide range of management practices (organic and/or mineral fertilisation, tillage or ploughing, with or without straw removal, with or without irrigation, etc.) and were cultivated with 15 representative crop species common to Europe. At all sites, carbon inputs (organic fertilisation and seeds), carbon exports (harvest or fire) and net ecosystem production (NEP), measured with the eddy covariance technique, were calculated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from the field (yield) to the total GHGB. On average, NEP was negative (-284 +/- 228 gC m(-2) year(-1)), and most cropping systems behaved as atmospheric sinks, with sink strength generally increasing with the number of days of active vegetation. The NECB was, on average, 138 +/- 239 gC m(-2) year(-1), corresponding to an annual loss of about 2.6 +/- 4.5% of the soil organic C content, but with high uncertainty. Management strongly influenced the NECB, with organic fertilisation tending to lower the ecosystem carbon budget. On average, emissions caused by fertilisers (manufacturing, packaging, transport, storage and associated N2O emissions) represented close to 76% of EFO. The operation of machinery (use and maintenance) and the use of pesticides represented 9.7 and 1.6% of EFO, respectively. On average, the NEP (through uptake of CO2) represented 88% of the negative radiative forcing, and exported C represented 88% of the positive radiative forcing of a mean total GHGB of 203 +/- 253 gC-eq m(-2) year(-1). Finally, CE differed considerably among crops and according to management practices within a single crop. Because the CE was highly variable, it is not suitable at this stage for use as an emission factor for management recommendations, and more studies are needed to assess the effects of management on crop efficiency.
- Authors:
- Paré, D.
- Angers, D. A.
- Laganière, J.
- Source: Global Change Biology
- Volume: 16
- Issue: 1
- Year: 2010
- Summary: Deforestation usually results in significant losses of soil organic carbon (SOC). The rate and factors determining the recovery of this C pool with afforestation are still poorly understood. This paper provides a review of the influence of afforestation on SOC stocks based on a meta-analysis of 33 recent publications (totaling 120 sites and 189 observations), with the aim of determining the factors responsible for the restoration of SOC following afforestation. Based on a mixed linear model, the meta-analysis indicates that the main factors that contribute to restoring SOC stocks after afforestation are: previous land use, tree species planted, soil clay content, preplanting disturbance and, to a lesser extent, climatic zone. Specifically, this meta-analysis (1) indicates that the positive impact of afforestation on SOC stocks is more pronounced in cropland soils than in pastures or natural grasslands; (2) suggests that broadleaf tree species have a greater capacity to accumulate SOC than coniferous species; (3) underscores that afforestation using pine species does not result in a net loss of the whole soil-profile carbon stocks compared with initial values (agricultural soil) when the surface organic layer is included in the accounting; (4) demonstrates that clay-rich soils (>33%) have a greater capacity to accumulate SOC than soils with a lower clay content (<33%); (5) indicates that minimizing preplanting disturbances may increase the rate at which SOC stocks are replenished; and (6) suggests that afforestation carried out in the boreal climate zone results in small SOC losses compared with other climate zones, probably because trees grow more slowly under these conditions, although this does not rule out gains over time after the conversion. This study also highlights the importance of the methodological approach used when developing the sampling design, especially the inclusion of the organic layer in the accounting.