- Authors:
- Devine, S.
- Markewitz, D.
- Hendrix, P.
- Coleman, D.
- Source: Forest Science
- Volume: 57
- Issue: 1
- Year: 2011
- Summary: Forest succession (FS) and no-till (NT) agriculture are generally assumed to have a beneficial effect on surficial soil organic C (SOC) stocks compared with conventional tillage (CT) management; however, land use effects to depths >30 cm remain uncertain. In this research we compared SOC contents and composition to 2 m under CT, NT, and FS at the 30-year Horseshoe Bend agroecosystem experiment in Athens, Georgia, USA. Soils from 0 to 2 m were fractionated into particulate organic C (POC) (53-2000 m) and fine C (<53 m) fractions, and bulk soil delta 13C signatures were determined. Soils from 0 to 28 cm were dry- and wet-sieved to estimate aggregate stability. Soil solutions were also collected at 0, 15, and 100 cm for dissolved organic C (DOC) analysis. Full-profile (0-2 m) SOC storage is 52 Mg ha -1 in CT, 60 Mg ha -1 in NT, and 62 Mg ha -1 in FS. Significant differences are limited to 0-5 cm and are linked to enhanced aggregate stability under NT and FS. Increases in subsoil POC under FS and changes in soil delta 13C and C/N ratio indicate that substantial subsoil C cycling has occurred. DOC fluxes at 0 cm were significantly greater under NT (200 kg ha -1 year -1) and FS (210 kg ha -1 year -1) than under CT (80 kg ha -1 year -1). DOC fluxes at 15 cm are estimated to be 20 kg ha -1 year -1 under CT and NT and 40 kg ha -1 year -1 under FS. At 100 cm, DOC fluxes are 2 kg ha -1 year -1, regardless of land use. An increase in FS POC of 2 Mg ha -1 from 15 to 100 cm outweighs cumulative differences in DOC input to this layer, implicating deep forest rooting and bioturbation as active mechanisms in subsoil C change. Whereas differences in SOC content were concentrated near the surface, dynamic changes in C cycling extend well below the plow layer.
- Authors:
- Feng, G.
- Sharratt, B.
- Young, F.
- Source: Journal of Soil and Water Conservation
- Volume: 66
- Issue: 4
- Year: 2011
- Summary: In the low precipitation zone (<0.3 m [11.8 in] annual precipitation) of the Inland Pacific Northwest, no-tillage continuous spring cereal and no-tillage spring cereal-chemical fallow rotations are being examined as alternatives to the traditional winter wheat-summer fallow rotation for soil conservation. There is limited information, however, regarding the long-term effects of no-tillage cropping systems on soil hydraulic properties in this semiarid region. The objective of this study was therefore to characterize infiltration, water retention, saturated hydraulic conductivity and bulk density of a silt loam that had been subject to various tillage and crop rotations in east-central Washington. Treatments examined included no-tillage spring barley-spring wheat (NTSB-SW), no-tillage spring wheat-chemical fallow (NTSW-ChF), and traditional winter wheat-summer fallow (WW-SF). Soil properties were measured in spring and late summer 2006 due to the vulnerability of the soil to rapidly dry and erode during these seasons. Saturated hydraulic conductivity was determined by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention characteristics was assessed by examining the temporal variation of in situ soil water content. NTSB-SW resulted in higher infiltration and saturated hydraulic conductivity, lower bulk density, and larger and/or more continuous pores in the upper soil profile (<0.1 in [<3.9 in] depth) than WW-SF and NTSW-ChE Infiltration and saturated hydraulic conductivity were lower for chemical fallow than for traditional fallow in spring whereas hydraulic conductivity was lower for summer fallow than chemical fallow in late summer. Soil hydrologic properties appeared more favorable for no-tillage continuous spring cereal rotations. These results arc useful for soil and water management and conservation planning in the low precipitation zone of the Inland Pacific Northwest.
- Authors:
- Fisher, K. A.
- Momen, B.
- Kratochvil, R. J.
- Source: Agronomy Journal
- Volume: 103
- Issue: 2
- Year: 2011
- Summary: Agricultural nutrient runoff to the Chesapeake Bay has been under intense scrutiny for more than a decade in Maryland. One method for capturing these nutrients, especially N, is the use of winter cover crops. This study compared various broadcast cover crop treatments with and without soil incorporation to planting winter cover crop seed with a no-till drill. Seedling emergence and N uptake were the dependent variables measured for two planting dates and seven planting methods. The effects of planting date and planting method for winter wheat ( Triticum aestivum L.) and cereal rye ( Secale cereale L.) following corn ( Zea mays L.) harvest were investigated at two locations. The study was conducted over two winter cover crop growing seasons: 2007-2008 and 2008-2009. Treatments that incorporated the seed into the soil consistently established better stands of cover crops and took up more N regardless of fluctuations in temperature, rainfall, and planting date. Early planted cover crops consistently took up more N than those planted on the later planting date. Performance of the broadcast treatments was highly dependent on rainfall and mild temperatures for success, but did take up notable amounts of N when planted early under good growing conditions. The few differences that were found in the N uptake between wheat and rye within the same planting treatment always indicated that the rye achieved better N uptake than wheat.
- Authors:
- Franzluebbers, A. J.
- Causarano, H. J.
- Norfleet, M. L.
- Source: Plant and Soil
- Volume: 338
- Issue: 1-2
- Year: 2011
- Summary: Prediction of soil organic C sequestration with adoption of various conservation agricultural management approaches is needed to meet the emerging market for environmental services provided by agricultural land stewardship. The soil conditioning index (SCI) is a relatively simple model used by the USDA-Natural Resources Conservation Service to predict qualitative changes in soil organic matter. Our objective was to develop a quantitative relationship between soil organic C derived from published field studies in the southeastern USA and SCI scores predicted from matching management conditions. We found that soil organic C sequestration (at 20 +/- 5 cm depth) could be reliably related to SCI across a diversity of studies in the region using the regression slope: 1.65 Mg C ha(-1) SCI(-1) [which translated into a rate of 0.25 +/- 0.04 Mg C ha(-1) yr(-1) SCI(-1) (mean +/- standard error of 31 slope estimates)]. The calibration of soil organic C on SCI scores will allow SCI to become a quantitative tool for natural resource professionals to predict soil organic C sequestration for farmers wanting to adopt conservation practices.
- Authors:
- Garland, G. M.
- Suddick, E.
- Burger, M.
- Horwath, W. R.
- Six, J.
- Source: Agriculture, Ecosystems & Environment
- Volume: 144
- Issue: 1
- Year: 2011
- Summary: Knowing underlying practices for current greenhouse gas (GHG) emissions is a necessary precursor for developing best management practices aimed at reducing N2O emissions. The effect of no-till management on nitrous oxide (N2O), a potent greenhouse gas, remains largely unclear, especially in perennial agroecosystems. The objective of this study was to compare direct N2O emissions associated with management events in a cover-cropped Mediterranean vineyard under conventional tillage (CT) versus no-till (NT) practices. This study took place in a wine grape vineyard over one full growing season, with a focus on the seven to ten days following vineyard floor management and precipitation events. Cumulative N2O emissions in the NT system were greater under both the vine and the tractor row compared to CT, with 0.15 ± 0.026 kg N2O–N ha−1 growing season−1 emitted from the CT vine compared to 0.22 ± 0.032 kg N2O–N ha−1 growing season−1 emitted from the NT vine and 0.13 ± 0.048 kg N2O–N ha−1growing season−1 emitted from the CT row compared to 0.19 ± 0.019 kg N2O–N ha−1 growing season−1 from the NT row. Yet these variations were not significant, indicating no differences in seasonal N2O emissions following conversion from CT to NT compared to long-term CT management. Individual management events such as fertilization and cover cropping, however, had a major impact on seasonal emissions, indicating that management events play a critical role in N2O emission patterns.
- Authors:
- Rickman, R. W.
- Liang, Y.
- Albrecht, S. L.
- Machado, S.
- Kang, S.
- Gollany, H. T.
- Source: Agronomy Journal
- Volume: 103
- Issue: 1
- Year: 2011
- Summary: Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1-19 degrees C), precipitation (402-973 mm), and SOC (5.89-33.58 g SOC kg(-1)) at the LTE sites were significantly related (r(2) = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks.
- Authors:
- Jantalia, C. P.
- Halvorson, A. D.
- Source: Agronomy Journal
- Volume: 103
- Issue: 5
- Year: 2011
- Summary: Converting to no-till (NT) production can affect N requirements for optimizing corn ( Zea mays L.) yields while enhancing soil organic carbon (SOC) and N levels. Nitrogen fertilization impacts on irrigated, NT continuous-corn grain, stalk, cob, and stover yields, stover C and N uptake, and C/N ratios were evaluated for 11 yr on a clay loam soil. Changes in SOC and total soil nitrogen (TSN) were also monitored. Grain, stalk, cob, and stover yields increased with increasing N rate, as did N and C uptake. The C/N ratio of stalk residue declined with increasing N rate, but cob C/N ratio was not affected, with an average stover C/N ratio of 68 at the highest N rate. Nitrogen fertilization increased SOC and TSN levels with average SOC and TSN mass rate gains with N application of 0.388, 0.321, and 0.160 Mg SOC ha -1 yr -1 and 0.063, 0.091, and 0.140 Mg TSN ha -1 yr -1 in the 0- to 7.6-, 0- to 15.2-, and 0- to 30.4-cm soil depths, respectively. The SOC and TSN mass rate changes were lower without N application. Increases in TSN appeared to be more rapid than SOC, resulting in a decline in the soil C/N ratio with time. Under irrigated, NT continuous corn production, N fertilization optimized grain and residue yields, with the enhanced benefit of increased SOC and TSN levels in the semiarid central Great Plains. Removal of cobs or partial stover residue as a cellulosic feedstock for ethanol production appears possible without negative effects on soil quality under irrigated, NT corn production.
- Authors:
- Source: IOBC/WPRS Bulletin
- Volume: 64
- Year: 2011
- Summary: Slugs are often problems in field crops grown using conservation tillage practices in the eastern United States, as well as certain locations in the Midwest and the southern USA, as well as in Canada. Although most concern has been on corn and soybean, reports of problems from dry beans, cotton, oil-seed rape, sunflowers, winter wheat, and fall planted alfalfa are often received. Although most problems are in fields located in the original forested areas of eastern and southern USA, reports are also being received from the Great Plains' grass lands of slug issues in irrigated no-till fields. Overall, slug problems have increased in geographical area as growers in the USA and Canada have adopted conservation tillage practices. As in other areas of the world, determining new methods of slug control is of utmost importance in order to allow growers to continue using conservation tillage practices. In areas that are new to slugs, a primary concern is educating growers on IPM approaches to slug management.
- Authors:
- Hartman, J. C.
- Orozco, R. A.
- Nippert, J. B.
- Springer, C. J.
- Source: Biomass and Bioenergy
- Volume: 35
- Issue: 8
- Year: 2011
- Summary: Switchgrass ( Panicum virgatum L.) is a broadly adapted warm-season grass species native to most of the central and eastern United States. Switchgrass has been identified as a potential biofuel species because it is a native species that requires minimal management, and has a large potential to sequester carbon underground. Since the 1990's, switchgrass has been bred to produce cultivars with increased biomass and feedstock quality. This review addresses potential ecological consequences of widespread switchgrass cultivation for biofuel production in the central United States. Specifically, this review address the ecological implications of changing use of marginal and CRP land, impacts on wildlife, potentials for disease and invasions, and changes in soil quality through reductions in erosion, decomposition rates, and carbon sequestrations. A central theme of the review is the utility of maintaining landscape heterogeneity during switchgrass biofuel production. This includes implementing harvest rotations, no till farming, and mixed species composition. If negative ecological consequences of switchgrass cultivation are minimized, biofuel production using this species has economical and environmental benefits.
- Authors:
- Balkcom, K. S.
- Burmester, C. H.
- Source: Better Crops With Plant Food
- Volume: 95
- Issue: 3
- Year: 2011
- Summary: Increased no-till or reduced tillage within Alabama wheat fields has raised research questions on how the trend might impact optimal N fertilizer rates and timings. Monitoring tiller growth as a means to predict N requirements was another option assessed across major soil types within the region.