- Authors:
- Negrisoli, E.
- Crusciol, C. A. C.
- Castro, G. S. A.
- Perim, L.
- Source: Planta Daninha
- Volume: 29
- Year: 2011
- Summary: Tillage and other agricultural production systems can contribute to weed suppression. Thus, the objective of this study was to evaluate weed control using different grain production systems. The treatments were: I. "Harvest-fallow" System-soybean/fallow/corn/fallow/rice/fallow/soybean; II. "Harvest-green manure" System-soybean/millet/maize/pigeon pea/rice/Crotalaria/soybean; III. "Harvest-out of season" System-soy/white oats/corn/dry bean/rice/castor oil/soybean; and IV "Harvest-fodder" System-brachiaria + soy/corn + brachiaria/brachiaria + rice/soybeans. A weed survey was carried out in November 2009, after three growing seasons. A 0.3 x 0.3 m frame was randomly launched four times within each plot. The plants were identified, and the total number of weeds, dry weight, and control percentage of the species were determined according to the production system. The phytosociological analysis of the weed community was also conducted. The systems Harvest-green manure; Harvest-out of season and Harvest-fodder presented a good weed control when compared to the Harvest-fallow system. Therefore, the presence of some type of soil cover is important to maintain favorable soil characteristics and good weed control.
- Authors:
- Mehla, R. S.
- Punia, M.
- Ladha, J. K.
- Khurana, M. L.
- Chandna, P.
- Gupta, R.
- Source: Environmental Monitoring & Assessment
- Volume: 178
- Issue: 1-4
- Year: 2011
- Summary: Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)-wheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO(3)-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO(3)-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5-10 mg l (-aEuro parts per thousand 1)) and high (> 10 mg l (-aEuro parts per thousand 1)) risk categories, respectively. The results revealed that NO(3)-N was 10-50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r (2) = 0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO(3) (-) enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO(3) in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO(3) enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.
- Authors:
- Liscano,J. F.
- Boquet, D. J.
- Breitenbeck, G. A.
- Mascagni, H. J.,Jr.
- Clawson, E. L.
- McCarter, K. S.
- Source: Journal of Plant Nutrition
- Volume: 34
- Issue: 6
- Year: 2011
- Summary: Soil nitrogen (N)-supplying capacity bioassays could present alternatives to traditional soil tests. Objectives were to identify winter crops and associated characteristics with bioassay potential. Saint Joseph and Bossier City, LA experiments used randomized complete block designs with factorial N fertilizer and winter crop treatment arrangements. Nitrogen rates were applied to corn (Zea mays L.) in 2004. Unfertilized winter wheat (Triticum aestivum L.), cereal rye (Secale cereale L.), native winter vegetation, and weed-free winter fallow treatments followed corn. At Saint Joseph, cotton (Gossypium hirsutum L.) followed winter crop treatments. Greater corn N rate consistently increased winter crop biomass and N accumulation, suggesting potential as bioassays, and increased Saint Joseph seedcotton yield. Winter crop-seedcotton yield N-response relationships were non-significant by familywise error rate criteria. However, some winter crop characteristics, such as rye N accumulation, for which a relationship to seedcotton yield closely approached significance, may merit further research as soil N-supplying capacity bioassays.
- Authors:
- Leifert, C.
- Critchley, C. N. R.
- Eyre, M. D.
- Wilcockson, S. J.
- Source: European Journal of Agronomy
- Volume: 34
- Issue: 3
- Year: 2011
- Summary: A survey of 128 plots, in 2008, of a trial where the effects of crop protection can be separated from those of fertility management, generated weed cover data within six crops (winter wheat, winter barley, spring barley, potatoes, cabbages and a grass/clover ley). The effects of the 2008 crop types, of the two preceding crops and of organic and conventional crop protection and fertility management, were assessed using mixed-effects models and constrained ordination. Cover data for 22 weed species and for monocotyledon, dicotyledon, annual, perennial and total weed cover were used. Cover of 15 weed species, and of the five weed groups, was significantly affected by 2008 crops, with cover highest in spring beans and cabbage. Nine and four weed species 2008 cover were significantly related to crops grown in 2007 and 2006 respectively, as were dicotyledon, annual and total weed cover, but not monocotyledon or perennial cover. Cover of 15 species, and the five groups, was significantly higher in plots with organic crop protection, but only eight species and annuals were significantly affected by fertility management. Crop:crop protection produced the most significant interactions with most cover in organically managed plots. Five species, perennials and total weed cover produced significant three-factor models. The greatest weed cover was in organic crop protected but conventionally fertilised spring barley and the least in totally conventional winter barley. Other factors such as crop density and mechanical weeding also affected 2008 weed cover. The ordination indicated that most of the 22 species were strongly associated with crops from all three years. The sequence of crops in the rotation had a profound effect on weed cover. Where three spring-sown, difficult to weed, crops were grown in sequence (spring beans, potatoes and vegetables, spring barley) weed cover increased. However, cover was limited in grass/clover and some cereal plots with different preceding crops. Models predicting weed cover may need to take into account crop sequences within crop rotations, as well as the more usual management inputs. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Kumar, V.
- Kumar, V.
- Saharawat, Y. S.
- Ladha, J. K.
- Gathala, M. K.
- Sharma, P. K.
- Source: Soil Science Society of America Journal
- Volume: 75
- Issue: 5
- Year: 2011
- Summary: Rice-wheat (Oryza sativa L.-Triticum aestivum L.) rotation is the major production system in Asia, covering about 18 million ha. Conventional practice of growing rice (puddled transplanting) and wheat (conventional till, CT) deteriorate soil physical properties, and are input- and energy-intensive. Zero-tillage (ZT) along with drill-seeding have been promoted to overcome these problems. A 7-yr permanent plot study evaluated various tillage and crop establishment (CE) methods on soil physical properties with an aim to improve soil health and resource-use efficiency. Treatments included transplanting and direct-seeding of rice on flat and raised beds with or without tillage followed by wheat in CT and ZT soil. Bulk density (D(b)) of the 10- to 20-cm soil layer was highest under puddled treatments (1.74-1.77 Mg m(-3)) and lowest under ZT treatments (1.66-1.71 Mg m(-3)). Likewise, soil penetration resistance (SPR) was highest at the 20-cm depth in puddled treatments (3.46-3.72 MPa) and lowest in ZT treatments (2.51-2.82 MPa). Compared with conventional practice, on average, water-stable aggregates (WSAs) > 0.25 mm were 28% higher in ZT direct-seeding with positive time trend of 4.02% yr(-1). Infiltration was higher (0.29-0.40 cm h(-1)) in ZT treatments than puddled treatments (0.18 cm h(-1)). The least-limiting water range was about double in ZT direct-seeding than that of conventional practice. Gradual improvement in soil physical parameters in ZT system resulted in improvement in wheat yield and is expected to be superior in long-run on system (rice+wheat) basis. Further research is needed to understand mechanisms and requirements of two cereals with contrasting edaphic requirements in their new environment of ZT direct-seeding.
- Authors:
- Lawn, . J.
- Gaynor, L. G.
- James, A. T.
- Source: Crop and Pasture Science
- Volume: 62
- Issue: 12
- Year: 2011
- Summary: Serial sowing date studies were used to examine the response of a diverse range of soybean genotypes to sowing date in the Murrumbidgee Irrigation Area (MIA). The aim was to explore the scope to improve the flexibility for rotating irrigated summer soybean crops with winter cereals by broadening the range of potential sowing dates. Serial sowings of diverse genotypes were made in small plots at intervals of ~7 days (2006-07) or 10 days (2007-08) from late November to late January (2006-07) or mid-February (2007-08) and the dates of flowering and maturity recorded. Simple linear models relating rate of development towards flowering to photo-thermal variables indicated that large differences in time to flowering between genotypes, sowing dates, and years could be explained in terms of differences in genotype sensitivity to mean photoperiod and/or mean daily temperature between sowing and flowering. In general, warmer temperatures hastened and longer days delayed flowering, consistent with quantitative short-day photoperiodic response. The earliest flowering genotypes were insensitive to the prevailing photoperiods, and their smaller variations in time to flower over sowing dates and years were related to temperature. Conversely, later flowering genotypes were progressively more sensitive to photoperiod, with flowering occurring later and being more responsive to sowing date. In both seasons, late maturing genotype * sowing date combinations suffered cold temperature damage and frosting. For those genotype * sowing date combinations that were physiologically mature before the first frost, crop duration was a linear function ( r2=0.86**) of time to flowering. In 2007-08, measurements were also made at maturity of total standing dry matter (TDM), seed yield, and seed size. For those genotype * sowing date combinations that matured before the first frost, TDM was largely a linear function ( r2=0.83**) of crop duration, while seed yield was strongly related ( r2=0.86**) to TDM. Exposure to cold temperatures before physiological maturity reduced seed size and harvest index. Using the generalised relations developed in these studies, it was concluded that commercial yields may be possible for irrigated soybean crops in the MIA sown in December or possibly later. These options are evaluated in greater detail in the companion paper, using large-scale agronomic trials of a subset of adapted genotypes.
- Authors:
- Akmal, M.
- Hassan, M. F.
- Habib, G.
- Ghufranullah
- Ahmad, S.
- Source: Pakistan Journal of Botany
- Volume: 43
- Issue: 2
- Year: 2011
- Summary: The experiment was conducted to compare Pigeon pea (PP) and Sesbania gentia (SG) legumes as catch crop in a permanent cereal based (Wheat-maize) rotation. The residual effect of legumes with or without added fertilizer (N) was studies on subsequent maize crop grown as fodder. The study aimed to evaluate catch crop response as manure or fodder on the following maize. The results showed that SG was higher in crude protein (p
- Authors:
- Rydberg, T.
- Keller, T.
- Arvidsson, J.
- HÃ¥kansson, I.
- Source: Acta Agriculturae Scandinavica, Section B - Soil & Plant Science
- Volume: 61
- Issue: 5
- Year: 2011
- Summary: Rapid and uniform crop establishment is a prerequisite for efficient crop production and minimal environmental impact. Experiments were carried out in shallow plastic boxes placed directly on the ground in the field for studies of the effects of seedbed properties on emergence of various crops. This paper presents an analysis of the time required for germination and emergence under near-optimal seedbed conditions. The crops studied were barley, oats, wheat, pea, rape seed, white mustard, sugar beet, red clover and timothy. The time required for germination generally increased with size of the seeds, presumably because larger seeds needed more water to initiate germination. This applied both when comparing different crops and different seed sizes of the same crop. However, considerable differences occurred between seed lots of the same crop and there were greater differences between seed lots of the same crop than between the three small grain crops studied. Growth rate of the seedlings generally increased with seed size, presumably because of increased energy content in the seed. Consequently, the most rapid emergence was obtained from small seeds at shallow sowing and from large seeds at deep sowing. The crops studied had a minimum temperature for germination and seedling growth close to 0 degrees C. Under optimal seedbed conditions, thermal time required for 50% germination of barley was typically about 65 degrees C days over this base temperature and for seedling growth about 6 degrees C days cm(-1). From 4 cm sowing depth, about 80 degrees C days were required for emergence but with considerable variations between seed lots. For rape seed or white mustard about 40 degrees C days were required for germination and about 8 degrees C days cm(-1) for the seedling growth.
- Authors:
- Holm, F. A.
- Johnson, E. N.
- Blackshaw, R. E.
- O'Donovan, J. T.
- Harker, K. N.
- Clayton, G. W.
- Source: Weed Science
- Volume: 59
- Issue: 3
- Year: 2011
- Summary: Growing crops that exhibit a high level of competition with weeds increases opportunities to practice integrated weed management and reduce herbicide inputs. The recent development and market dominance of hybrid canola cultivars provides an opportunity to reassess the relative competitive ability of canola cultivars with small-grain cereals. Direct-seeded (no-till) experiments were conducted at five western Canada locations from 2006 to 2008 to compare the competitive ability of canola cultivars vs. small-grain cereals. The relative competitive ability of the species and cultivars was determined by assessing monocot and dicot weed biomass at different times throughout the growing season as well as oat (simulated weed) seed production. Under most conditions, but especially under warm and relatively dry environments, barley cultivars had the greatest relative competitive ability. Rye and triticale were also highly competitive species under most environmental conditions. Canada Prairie Spring Red wheat and Canada Western Red Spring wheat cultivars usually were the least competitive cereal crops, but there were exceptions in some environments. Canola hybrids were more competitive than open-pollinated canola cultivars. More importantly, under cool, low growing degree day conditions, canola hybrids were as competitive as barley, especially with dicot weeds. Under most conditions, hybrid canola growers on the Canadian Prairies are well advised to avoid the additional selection pressure inherent with a second in-crop herbicide application. Combining competitive cultivars of any species with optimal agronomic practices that facilitate crop health will enhance cropping system sustainability and allow growers to extend the life of their valuable herbicide tools.
- Authors:
- Source: Russian Meteorology and Hydrology
- Volume: 36
- Issue: 12
- Year: 2011
- Summary: The methods are presented of agrometeorological forecasting of winter and spring grain crops for the district, all types of farm units, and field taking account of the regional crop forecast, weather conditions, cereal cropping technologies, and soil cultivation level. The additional yields of winter and spring wheat and spring barley and oat are developed depending on the soil cultivation level, summertime soil moistening, and doses of mineral fertilizers. The method tested on the basis of independent data demonstrated that the accuracy of such forecasts is 83-99% for the fields with intensive cultivation technology and 80% for the farm units.