- Authors:
- Ganesh-Kumar, A.
- Pullabhotla, H.
- Prasad, S. K.
- Issue: 1120
- Year: 2011
- Summary: This paper attempts to estimate the future supply and demand for cereals in Nepal. While there has been considerable research in the past examining the agricultural sector in Nepal, to the best of our knowledge there has been no analysis of the supply-demand scenario for food grains in the country. The analysis undertaken in this paper attempts to bridge this gap in the literature by estimating supply and demand models for the three most important cereals in Nepal's food basket: rice, wheat, and maize. The supply projections have been carried out on the basis of a single-crop production function model using data for the period 1995-2008. For estimating the demand function and projecting future demand, data from the Nepal Living Standards Survey II (NLSS II), undertaken in the year 2003/04, are used. The forecasting exercise undertaken here provides a possible picture of rice, wheat, and maize production and demand under business-as-usual, optimistic, and pessimistic scenarios for the years 2010, 2015, 2020, 2025, and 2030. These future projections show a persistent shortfall in the domestic production of rice in Nepal to meet the total demand. Under the pessimistic set of conditions the rice demand in Nepal is projected to be more than double the domestic production in the year 2030. Under the optimistic scenario, production deficit is about 41 percent. In the case of wheat and maize, however, our model estimates a persistent surplus in the domestic production over total domestic demand, going up to as high as 75 percent for wheat and 64 percent for maize under optimistic conditions for the year 2030. Overall, the prime concern for Nepal in ensuring sufficient food supply for the future appears to be with regard to rice, as evidenced by the substantial deficit between the projected supply and demand for rice. Our estimates show that the gap between the domestic production and direct demand by households for rice is likely to vary between 19 percent and 80 percent. It appears that even with accelerated irrigation and increasing fertilizer supply, this deficit in rice would remain. However, technological inputs such as improved seeds, which are not adequately captured in our model, could help increase the yield frontier and help meet a part of this deficit in the future.
- Authors:
- Drinkwater, L. E.
- Schipanski, M. E.
- Source: Nutrient Cycling in Agroecosystems
- Volume: 90
- Issue: 1
- Year: 2011
- Summary: The incorporation of legume cover crops into annual grain rotations remains limited, despite extensive evidence that they can reduce negative environmental impacts of agroecosystems while maintaining crop yields. Diversified grain rotations that include a winter cereal have a unique niche for interseeding cover crops. To understand how management-driven soil fertility differences and inter-seeding with grains influenced red clover (Trifolium pratense) N(2) fixation, we estimated biological N(2) fixation (BNF) in 2006 and 2007, using the (15)N natural abundance method across 15 farm fields characterized based on the reliance on BNF derived N inputs as a fraction of total N inputs. Plant treatments included winter grain with and without interseeded red clover, monoculture clover, monoculture orchardgrass (Dactylis glomerata), and clover-orchardgrass mixtures. Fields with a history of legume-based management had larger labile soil nitrogen pools and lower soil P levels. Orchardgrass biomass was positively correlated with the management-induced N fertility gradient, but we did not detect any relationship between soil N availability and clover N(2) fixation. Interseeding clover with a winter cereal did not alter winter grain yield, however, clover production was lower during the establishment year when interseeded with taller winter grain varieties, most likely due to competition for light. Interseeding clover increased the % N from fixation relative to the monoculture clover (72% vs. 63%, respectively) and the average total N(2) fixed at the end of the first growing season (57 vs. 47 kg N ha(-1), respectively). Similar principles could be applied to develop more cash crop-cover crop complementary pairings that provide both an annual grain harvest and legume cover crop benefits.
- Authors:
- Czymmek, K. J.
- Chase, L. E.
- Ketterings, Q. M.
- Swink, S. N.
- van Amburgh, M. E.
- Source: Journal of Soil and Water Conservation
- Volume: 66
- Issue: 1
- Year: 2011
- Summary: New York (NY) has dairy, cash grain, fruit, and vegetable industries located in close proximity to water, making it important to optimize manure and fertilizer use for both economic production of crops and protection of the environment. The gross phosphorus (P) balance for NY (manure and fertilizer P minus crop P removal) estimated for 2006 was +1.7 kg ha(-1) (+1.5 lb ac(-1)), indicating that, on a statewide basis, P is in balance. Our objectives in this study were to (1) estimate state, regional, and county-level gross nitrogen (N) balances for NY for 2007; (2) evaluate N balance trends over time (1987, 1992, 1997, 2002, and 2007); (3) estimate nonlegume cropland (net) N balances for 2007; and (4) quantify the potential impact of improved herd nutrition and manure incorporation on N balances. The 2007 NY gross N balance for nonlegume cropland was +62 kg ha(-1) (+55 lb ac(-1)). Long Island and western NY had the highest N balances (+101 and +77 kg ha(-1) [+90 and +69 lb ac(-1)], respectively) reflecting N fertilizer use for horticultural and/or cash grain crops (both regions) and presence of a concentrated dairy industry (western NY). The Chesapeake Bay watershed and Lake Champlain Basin counties had gross N balances below +28 kg ha(-1) (+25 lb ac(-1)). The statewide N balance decreased from +125 kg ha(-1) (+112 lb ac(-1)) in 1987 to +62 kg ha(-1) (+55 lb ac(-1)) in 2007, largely driven by a decline in N fertilizer use between 1987 and 1992. The statewide N balance dropped to -38 kg ha(-1) (-34 lb ac(-1)) when manure N losses in the barn and storage system and at land application were taken into account. Given a nearly zero P balance, a negative N balance indicates the need for best management practices that increase N use efficiency of manure and fertilizer and/or add N from other sources (cover crops, greater reliance on N fixation, shorter rotations). Improvement in herd nutrition through precision feeding has the potential to increase N use efficiency of surface applied manure and thus reduce N loss to the environment. However, such improvements will also reduce the total amount of N excreted and decrease the N:P ratio of the manure. Best management practices that reduce N loss in the barn and storage system, increase manure and fertilizer N uptake efficiency, and/or reduce N needs will be essential in order to balance N and P for the long-term sustainability of NY agriculture.
- Authors:
- Budzynski, W.
- Szemplinski, W.
- Source: ACTA Scientiarum Polonorum, Agricultura
- Volume: 10
- Issue: 2
- Year: 2011
- Summary: The paper comprises a review of the results of studies on cereal mixtures published in 2003-2007 in the Polish scientific literature. There are presented herein the most important issues concerning yield ability, weed, pest and diseases infestation. Cereal mixtures occupy the highest area among spring cereals in Poland and grain harvested from mixtures plays an important role in production of feedstock in the country. The highest concentration of mixtures is noted in the eastern region and the lowest in the south-western part of Poland. The higher yield ability of mixtures compared to pure cereal stands is connected with complementary utilization of environmental resources in different time, space (under- or aboveground) or form (water, light, nutrients) by mixtures' components as well as with competition, responsible for changes in proportion of components in the mixture yield. The better stability of yield is attributed to a better competition ability against weeds and lower susceptibility of mixtures to diseases compared to pure stands. Mixed stands show a better response to some agronomical factors, such as irrigation, mineral fertilization and chemical protection against pests, weeds and diseases. A higher proportion of naked forms of barley and oat in mixtures has been recommended recently. Therefore, the mixture yields are lower than those of mixtures with hulled forms but their feeding value is higher, because of a lower content of fibre and a higher content of protein and fat.
- Authors:
- Calin, L.
- Taranu, I.
- Tabuc, C.
- Source: Archiva Zootechnica
- Volume: 14
- Issue: 4
- Year: 2011
- Summary: Fungal mycoflora and mycotoxin contamination were determined in 86 samples (21 maize, 21 wheat, 11 barley, 4 oats, 1 rye, 12 soya, 6 sunflower, 4 colza, 3 rice, 3 triticale), coming from the south-eastern part of Romania during the 2008 to 2010 period. The most frequent fungal contaminants belonged to the Aspergillus and Fusarium genera, maize was the most contaminated cereal. The main toxinogenic species identified were A. flavus, A. fumigatus, F. graminearum, F. culmorum in all cereals Aflatoxin B1 (AFB1), ochratoxin A (OTA), deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUMO), contents were analyzed by ELISA. More than 90% of the samples were found to be contaminated by at least one toxin. The most frequent mycotoxin was the deoxynivalenol (71.60%). Around 40% of samples were contaminated with AFB1 and FB. Ochratoxine A and zearalenone were found in 16% and 32% of samples respectively. These results demonstrated that cereals produced in Romania present a particular pattern of fungal mycoflora and mycotoxin contamination since DON, ZEA and FUMO as well as AFB1 and OTA were observed.
- Authors:
- Source: Mezhdunarodnyi Sel'skokhozyaistvennyi Zhurnal
- Issue: 5
- Year: 2011
- Summary: In Russia's Penza Oblast', cereal grain crops account for 58.1% of receipts from crop sales, sugarbeets account for 26.9%, and oil bearing crops 5.8%. Penza Oblast' can be divided into four different zones, each of which is characterized by different patterns of crop production. These zones are: (1) Vadinskii-Mokshanskii, comprising 12 raiony (administrative districts) in the Central and North Western parts of the oblast'; (2) Belinskii-Serdobskii, comprising seven raiony in the South and South West of the oblast'; (3) Nikol'skii-Gorodishchenskii, comprising three raiony in the North East of the oblast'; and (4) Kuznetskii-Lopatinskii, comprising five raiony in the South East and East of the oblast'. Zone (1) is characterized by average productivity soils, and includes 48.8% of the total land area used for cereal grain production in the oblast', 50.6% of land used for sugarbeet production, and 23.6% of land used for sunflower cultivation. Zone (2) has the highest productivity soils in the oblast', and accounts for 35.0% of the total land area used for cereal grain production in the oblast' and 49.4% of land used for sugarbeet cultivation in the oblast'. The fertility of most soils in zone (3) is poor, resulting in low productivity. Zone (3) accounts for just 4.0% of the total land area used for cereal grain production in the oblast', and technical crop production in this zone is almost nonexistent. Zone (4) accounts for 12.1% of the total land area used for cereal grain production in the oblast' and 31.5% of land used for sunflower cultivation. Sugarbeets are not grown in zone (4) because of the distance from sugar refineries. The zones in which crop production is most profitable are zones (1) and (2), which are also characterized by the highest degree of diversification. Overall, the most economically efficient crop types produced in the Oblast' are potatoes and sunflowers. Recommendations for the future development of different types of crop production in have been formulated on the basis of analysis of natural and economic factors existing in different parts of the oblast'. The recommendations relate to the cultivation of different cereal grain crops (including winter and summer wheat, barley, buckwheat, maize, rye and oats), legume crops (peas and lentils), sugarbeets, oil bearing crops (sunflowers, rape and camelina), potatoes, and other vegetables in the four different zones.
- Authors:
- Source: Plant and Soil
- Volume: 339
- Issue: 1/2
- Year: 2011
- Summary: Plants and humans cannot easily acquire iron from their nutrient sources although it is abundant in nature. Thus, iron deficiency is one of the major limiting factors affecting crop yields, food quality and human nutrition. Therefore, approaches need to be developed to increase Fe uptake by roots, transfer to edible plant portions and absorption by humans from plant food sources. Integrated strategies for soil and crop management are attractive not only for improving growing conditions for crops but also for exploiting a plant's potential for Fe mobilization and utilization. Recent research progress in soil and crop management has provided the means to resolve complex plant Fe nutritional problems through manipulating the rhizosphere (e.g., rhizosphere fertilization and water regulation), and crop management (includes managing cropping systems and screening for Fe efficient species and varieties). Some simple and effective soil management practices, termed 'rhizosphere fertilization' (such as root feeding and bag fertilization) have been developed and widely used by local farmers in China to improve the Fe nutrition of fruit plants. Production practices for rice cultivation are shifting from paddy-rice to aerobic rice to make more efficient use of irrigation water. This shift has brought about increases in Fe deficiency in rice, a new challenge depressing iron availability in rice and reducing Fe supplies to humans. Current crop management strategies addressing Fe deficiency include Fe foliar application, trunk injection, plant breeding for enriched Fe crop species and varieties, and selection of cropping systems. Managing cropping systems, such as intercropping strategies may have numerous advantages in terms of increasing Fe availability to plants. Studies of intercropping systems on peanut/maize, wheat/chickpea and guava/sorghum or -maize increased Fe content of crops and their seed, which suggests that a reasonable intercropping system of iron-efficient species could prevent or mitigate Fe deficiency in Fe-inefficient plants. This review provides a comprehensive comparison of the strategies that have been developed to address Fe deficiency and discusses the most recent advance in soil and crop management to improve the Fe nutrition of crops. These proofs of concept studies will serve as the basis for future Fe research and for integrated and optimized management strategies to alleviate Fe deficiency in farmers' fields.
- Authors:
- Kocourkova, D.
- Neckar, K.
- Fuksa, P.
- Pivec, J.
- Brant, V.
- Venclova, V.
- Source: Biomass and Bioenergy
- Volume: 35
- Issue: 3
- Year: 2011
- Summary: The biomass production dynamics of catch crops, volunteers and weeds in dependence on precipitation and air temperature, was studied in central Bohemia from 2004 to 2006. The cover of individual components of the growth was monitored during the same period. Also measured were energy and efficiency of utilization of global radiation by catch crops and volunteers. The catch crops included the following species: Brassica napus, Lolium multiforum, Lolium perenne, Phacelia tanacetifolia, Sinapis alba, Trifolium incarnatum, Raphanus sativus var. oleiformis and Trifolium subterraneum. The highest biomass production and the highest cover of catch crops were observed in treatments with S. alba (1382.0 kg ha(-1), 47.8%). The average biomass production (sum of catch crops, volunteers and weeds) was highest in treatments with S. alba, R. sativus, and P. tanacetifolia and lowest in treatments with B. napus, L. multiflorum and L. perenne. It was demonstrated that an increase in the percentage share of volunteers caused a decrease in the biomass production of catch crops. The average energy production ranged from 0.31 to 2.37 MJ m(-2) in treatments with catch crops, and from 0.25 to 0.89 MJ m(-2) in treatments with cereal volunteers. The highest effectivity of global radiation utilization, was determined in treatments with S. alba (0.11-0.47%). Based on regression analysis the closest dependence between biomass production from all treatments on the experimental site and precipitation was observed from 1st May till the time of sowing and the average air temperatures from the sowing period till the time of the last biomass production assessment. (C) 2010 Elsevier Ltd. All rights reserved.
- Authors:
- Karanisa, T.
- Gerhards, R.
- Brust, J.
- Ruff, L.
- Kipp, A.
- Source: GESUNDE PFLANZEN
- Volume: 63
- Issue: 4
- Year: 2011
- Summary: Cover crops and under-sown crops have often been reported to have a positive impact on soil structure, soil living organisms and soil fertility. In many studies it was shown that they suppress weed populations. However, the percentage of winter annual cereals in European cropping system has strongly increased, which consequently reduced the time for growing cover crops. In this study, it was investigated if cover crops and under-sown have the capacity to reduce weed infestations also in rotations with a high percentage of winter annual cereals. Three field trials were conducted using at the University of Hohenheim from 2008 until 2010. Trifolium repens and Lolium perenne reduced weed density and weed biomass in Triticum aestivum and Triticum spelta, when they were sown as under-sown crops. Both under-sown crops had no negative effect on grain yield. Until 14 days after harvest, the under-sown crops developed a dense plant canopy. In the third experiment, Sinapis alba, Phacelia tanacetifolia, Avena strigosa and a mixture of Trifolium alexandrinum, Vicia sativa, Fagopyrum tataricum and Guizotia abyssinica were sown directly after harvest of winter wheat. Most of the cover crops emerged after few days and significantly reduced the density and biomass of emerging weeds. Sinapis alba resulted in a 93% reduction of above-ground weed biomass. Avena strigosa reduced root-biomass of weed by 97% and weed density by 90%. In order to achieve a significant weed suppression, cover crops need to emerged quickly and grow rapidly until the soil has been covered. The results of this study underline the potential of under-sown crops and cover-crops to support a sustainable and environmental friendly cropping system.
- Authors:
- You, L. Z.
- Zhao, J. S.
- Ringler, C.
- Yang, Y. C. E.
- Cai, X. M.
- Source: Agricultural Water Management
- Volume: 98
- Issue: 8
- Year: 2011
- Summary: Agricultural water productivity (WP) has been recognized as an important indicator of agricultural water management. This study assesses the WP for irrigated (WPI) and rainfed (WPR) crops in the Yellow River Basin (YRB) in China. WPI and WPR are calculated for major crops (corn, wheat, rice, and soybean) using experimental, statistical and empirically estimated data. The spatial variability of WPI and WRR is analyzed with regard to water and energy factors. Results show that although irrigated corn and soybean yields are significantly higher than rainfed yields in different regions of the YRB, WPI is slightly lower than WPR for these two crops. This can be explained by the seasonal coincidence of precipitation and solar energy patterns in the YRB. However, as expected, irrigation stabilizes crop production per unit of water consumption over space. WPI and WPR vary spatially from upstream to downstream in the YRB as a result of varying climate and water supply conditions. The water factor has stronger effects on both crop yield and WP than the energy factor in the upper and middle basin, whereas energy matters more in the lower basin. Moreover, WP in terms of crop yield is compared to that in terms of agricultural GDP and the results are not consistent. This paper contributes to the WP studies by a basin context, a comparison between WPI and WPR, a comparison of WP in terms of crop yield and economic value, and insights on the water and energy factors on WP. Moreover, policy implications based on the WP analysis are provided.