• Authors:
    • Lupwayi, N.
    • Haq, A.
    • Arshad, M.
    • Soon, Y.
  • Source: Soil & Tillage Research
  • Volume: 95
  • Issue: 1/2
  • Year: 2007
  • Summary: Information on which management practices can enhance soil organic matter (SOM) content and quality can be useful for developing sustainable crop production systems. We tested the influence of 12 years of no-till (NT) versus conventional tillage (CT), and four crop sequences on the organic C pools of a Grey Luvisolic sandy loam soil in northwestern Alberta, Canada. The crop sequences were: continuous wheat ( Triticum aestivum L.), field pea ( Pisum sativum L.)-wheat-canola ( Brassica rapa L.)-wheat, red clover ( Trifolium pratense L.) green manure-wheat-canola-wheat/red clover and fallow-wheat-canola-wheat. Soil samples from 1992, when the study was initiated, and 1996, 2000 and 2004 were analysed for total organic C (TOC), the light fraction (LF) and its C content, and water-soluble and mineralizable C. Total organic C in the top 15 cm of soil was higher in the red clover rotation than either the pea or fallow rotation by 1996. The tillage effect became significant only in 2004 with NT having a higher TOC than CT. The LF dry matter (DM) increased from 6.9 g kg -1 soil in 1992 to a range of 10-13 g kg -1 in 2000 and 2004. It was higher under NT than CT in 2 of 3 years and in the red clover rotation than the pea or fallow rotation in 1 of 3 years. The LF C content exhibited a similar trend as LF DM. The water-soluble and mineralizable C pools were not affected by tillage but decreased with time. Among crop rotations, the red clover rotation tended to result in higher levels of hot water-soluble and mineralizable C. It is concluded that tillage had a greater influence than crop rotation on the LF DM and LF C (as indicators of C storage), whereas the converse effect applied to mineralizable C and, to a lesser degree, hot water-soluble C (as indicators of SOM quality).
  • Authors:
    • Waddell, J.
    • Lenssen, A.
    • Sainju, U. M.
    • Caesar-Tonthat, T.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: Sustainable management practices are needed to enhance soil productivity in degraded dryland soils in the northern Great Plains. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)fallow (W-P-F)], and a Conservation Reserve Program (CRP) on plant biomass returned to the soil, residue C and N, and soil organic C (SOC), soil total N (STN), and particulate organic C and N (POC and PON) at the 0- to 20-cm depth. A field experiment was conducted in a mixture of Scobey clay loam (fine, smectitic, frigid Aridic Argiustolls) and Kevin clay loam (fine-loamy, mixed, superactive, frigid Aridic Argiustolls) from 1998 to 2003 near Havre, MT. Mean annualized plant biomass returned to the soil from 1998 to 2003 was greater in W-F (2.02 Mg ha(-1)) than in W-L and W-W-F, regardless of tillage. In 2004, residue cover was greater in CW (60%) than in other rotations, except in W-W-E Residue amount and C and N contents were greater in NT with CW (2.47 Mg ha(-1) and 963 and 22 kg ha(-1), respectively) than in NT with W-L and CT with other crop rotations. The POC at 0 to 5 cm was greater in W-W-F and W-P-F (2.1-2.2 Mg ha(-1)) than in W-L. Similarly, STN at 5 to 20 cm was greater in CT with W-L (2.21 Mg ha(-1)) than in other treatments, except in NT with W-W-E Reduced tillage and increased cropping intensity, such as NT with CW and W-L, conserved C and N in dryland soils and crop residue better than the traditional practice, CT with W-F, and their contents were similar to or better than in CRP planting.
  • Authors:
    • Cantero-Martinez, C.
    • Westfall, D. G.
    • Sherrod, L. A.
    • Peterson, G. A.
  • Source: Journal of Soil and Water Conservation
  • Volume: 61
  • Issue: 2
  • Year: 2006
  • Summary: The presence of crop residue is an important component of dryland cropping systems management in the semiarid environment where soil erosion by wind is a major soil degradation process. Residue also affects precipitation capture and runoff. Long-term residue quantity dynamics of different cropping systems has not been studied in the semi-arid environment of the western Great Plains. Long-term studies were conducted in eastern Colorado, USA to determine the interaction of no-till cropping systems, soils, and climatic gradient on the production, retention, and disappearance of crop residue over a 12-year period. The cropping systems evaluated were winter wheat ( Triticum aestivum)-summer fallow (WF), winter wheat-maize ( Zea mays) or sorghum ( Sorghum bicolor)-summer fallow (WC/SF), winter wheat-maize/sorghum-millet ( Panicum miliaceum)-summer fallow (WC/SMF), and continuous cropping (CC). A soil surface residue base was achieved in a few years (four to five) and changed little over time. However, as cropping intensity increased the total crop residue retained on the soil surface increased as the proportion of fallow time decreased; a general trend was for residue levels to increase slowly. However, in the winter wheat-summer fallow system residue levels showed a trend to decrease after the initial base was achieved. Greater residue production and retention occurred on the toeslope soil position because these soils are deeper, have greater water holding capacity, and receive run-on water from upslope positions. Residue disappearance was less in the fallow period before maize planting compared to before wheat planting due to the greater fallow period, which included summer fallow in the wheat system. Residue loss was greater during the crop production periods as compared to the fallow periods. The levels of residue present on the soil surface in our intensive no-till cropping systems were generally adequate to control erosion by wind. However, at our high potential evapotranspiration site the residue levels were "marginal" for adequate wind erosion abatement, particularly in the winter wheat-summer fallow system. A combination of no-till management and increased cropping intensity (greater than winter wheat-summer fallow) is the key to sustainable production and soil conservation in this semi-arid environment.
  • Authors:
    • Abney, T. S.
    • Vyn, T. J.
    • Stott, D. E.
    • Gal, A.
    • Omonode, R. A.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: For various reasons, North American crop farmers are more likely to practice limited-duration no-till than continuous no-till (NT). Little is known about effects of short-term no-till (ST-NT) on organic C and total N relative to NT and conventional-till systems. A field experiment was initiated in 1980 to study the effects of NT, chisel plow (CP), and moldboard plow in continuous corn (CC; Zeamays L.) and soybean (Glycinemax. L.)-corn (SC) rotations on dark prairie soil. In 1996, the moldboard treatments were split into a ST-NT subplot and an intermittently chisel-plowed (STI-CP) subplot that was chiseled only before corn. In 2003, soil samples were taken incrementally to the 1.0-m depth from NT, CP, ST-NT, and STI-CP plots. Soil C and N accumulation was unaffected by rotation system at any depth interval. Tillage treatments significantly affected soil C and N concentrations only in the upper 50 cm. On an equivalent soil mass basis, C storage to 1.0 m after 24 yr totaled 151 Mg ha21 in continuous NT, but just 108 Mg ha21 in continuous CP. Short-term no-till and STI-CP systems resulted in 26 and 21 Mg ha21, respectively, more soil C than CP. Total N storage was similar for NT and ST-NT systems, but was significantly lower (4 Mg ha21 less) with CP. Our results suggest that the combination of moldboard plowing (17 yr) followed by short-term (6-7 yr) no-till or intermittent chisel was generally superior to continuous chisel plowing (24 yr) in soil C and N contents.
  • Authors:
    • Boyles, S. B.
    • Nelson, R. G.
    • Rice, C. W.
    • Williams, J. R.
    • Pendell, D. L.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.
  • Authors:
    • Hegymegi, P.
    • Gal, A.
    • Smith, D. R.
    • Omonode, R.A.
    • Vyn, T. J.
  • Source: 17th Triennial Conference of the International Soil Tillage Research Organisation (ISTRO)Conference Proceedings
  • Year: 2006
  • Summary: Few researchers have assessed the possibly interacting effects of long-term tillage and rotation practices on organic carbon (OC) sequestration in soil to depths well beyond the maximum depth of tillage operations while also studying carbon dioxide (CO2) emissions from the soil surface of those same experiments. This study was conducted from 2003 to 2005 on tillage and rotation experiments initiated 30 yrs ago in West-Central Indiana on a dark prairie soil with silty clay loam texture.. Our objectives were to determine how tillage systems such as moldboard plow (MP), chisel (CP), and no-till affected OC retention and surface soil CO2 emissions. These tillage systems were investigated in continuous corn and corn-soybean rotations. Soil OC distribution was determined from soil cores in multiple increments to a 1.0 m depth in late 2003 and early 2004. Gas fluxes from the soil surface were measured at weekly or biweekly intervals for up to 14 weeks in the corn growing seasons of 2004 and 2005. The increase in soil OC with no-till relative to moldboard plow averaged just 8 t/ha (or 5% on an equivalent mass basis) in both rotations. Rotation systems had little impact on OC; continuous corn was not superior to the soybean-corn rotation in either no-till or moldboard plow systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC, relative to no-till, in the 30-50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Growing season CO2 emissions were significantly affected by rotation but not by tillage treatments. . CO2 emission was higher under continuous corn than with corn following soybean. Our results suggest that conclusions about soil OC gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken much deeper than the deepest depth of direct soil disturbance by tillage implements. After 3 decades of consistent tillage and crop rotation management, tillage system impacts on overall soil OC retention and seasonal CO2 emissions were less than expected. Continuous corn did not store more soil OC than rotation corn, perhaps because continuous corn emitted more CO2 from the soil surface than corn- soybean rotation systems.
  • Authors:
    • Petrie, S.
    • Rhinhart, K.
    • Machado, S.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: Soil organic carbon (SOC) has beneficial effects on soil quality and productivity. Cropping systems that maintain and/or improve levels of SOC may lead to sustainable crop production. This study evaluated the effects of long-term cropping systems on C sequestration. Soil samples were taken at 0- to 10-, 10- to 20-, 20- to 30-, and 30- to 40-cm soil depth profiles from grass pasture (GP), conventional tillage (CT) winter wheat (Triticum aestivum L.)-fallow (CTWF), and fertilized and unfertilized plots of continuous winter wheat (WW), spring wheat (SW), and spring barley (Hordeum vulgare L.) (SB) monocultures under CT and no-till (NT). The samples were analyzed for soil organic matter (SOM) and SOC was derived. Ages of experiments ranged from 6 to 73 yr. Compared to 1931 SOC levels (initial year), CTWF reduced SOC by 9 to 12 Mg ha-1 in the 0- to 30-cm zone. Grass pasture increased SOC by 6 Mg ha-1 in the 0- to 10-cm zone but decreased SOC by 3 Mg ha-1 in the 20- to 30-cm zone. Continuous CT monocultures depleted SOC in the top 0- to 10-cm zone and the bottom 20- to 40-cm zone but maintained SOC levels close to 1931 SOC levels in the 10- to 20-cm layer. Continuous NT monocultures accumulated more SOC in the 0- to 10-cm zone than in deeper zones. Total SOC (0- to 40-cm zone) was highest under GP and continuous cropping and lowest under CTWF. Fertilizer increased total SOC only under CTWW and CTSB by 13 and 7 Mg ha-1 in 13 yr, respectively. Practicing NT for only 6 yr had started to reverse the effect of 73 yr of CTWF. Compared to CTWF, NTWW and NTSW sequestered C at rates of 2.6 and 1.7 Mg ha-1 yr-1, respectively, in the 0- to 40-cm zone. This study showed that the potential to sequester C can be enhanced by increasing cropping frequency and eliminating tillage.
  • Authors:
    • Liu, X. J.
    • Reule, C. A.
    • Halvorson, A. D.
    • Mosier, A. R.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha-1. Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.
  • Authors:
    • Tanaka, D. L.
    • Liebig, M. A.
    • Frank, A. B.
  • Source: Soil & Tillage Research
  • Volume: 89
  • Issue: 1
  • Year: 2006
  • Summary: Soil respiration is a process influenced by land use, management practices, and environmental conditions. Our objectives were to evaluate relationships between management-induced differences in soil organic carbon (SOC) and soil CO2 efflux from continuous no-till spring wheat (Triticum aestivum L.), spring wheat-fallow under no-till, and a native mixed-grass prairie with grazing near Mandan, ND. A Werner-Sen-Chama soil complex (Entic Haplustoll, Typic Haplustoll, and Typic Calciustoll) was present at the grassland site and a Wilton silt loam (Pachic Haplustoll) at the cropping sites. Soil chambers were used to measure soil CO2 effluxes about every 21 days starting 14 May 2001 to 1 April 2003. Soil water and soil temperature were measured at time of CO2 efflux measurements. Soil organic carbon, microbial biomass carbon (MBC), and above and belowground plant biomass were measured in mid-July each year. Root biomass to 0.3 m depth of the undisturbed grassland was significantly greater (12.3 Mg ha-1) than under continuous wheat (1.3 Mg ha-1) and wheat-fallow (0.3 Mg ha-1). Grassland SOC content of 84 Mg ha-1 to 0.3 m soil depth was 1.2 times greater than continuous wheat and 1.3 times greater than wheat-fallow. The MBC of the grassland was 2.2 Mg ha-1, or 3.6 times greater than continuous wheat and 7.2 times greater than wheat-fallow treatments. Soil CO2 efflux averaged 2.8 g CO2-C m-2 day-1 for grassland, compared to 1.9 g CO2-C m-2 day-1 for wheat fallow and 1.6 g CO2-C m-2 day-1 for continuous wheat treatments. Although these CO2 efflux rates were based on measurements made at intervals of about 21 days, the differences among treatments with time were rather consistent. Differences in soil CO2 efflux among treatments could be attributed to differences in SOC and MBC, suggesting that land use plays a significant role in soil CO2 efflux from respiration.
  • Authors:
    • Lampurlanés, J.
    • Cantero-Martínez, C.
  • Source: Soil & Tillage Research
  • Volume: 85
  • Issue: 1-2
  • Year: 2006
  • Summary: The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day(-1)) than under subsoil tillage (15.5 cm day(-1)) or minimum tillage (14.3 cm day(-1)) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (