- Authors:
- Babu, K. S.
- Sharma, R. K.
- Kumar, K.
- Sharma, A. K.
- Source: Crop Protection
- Volume: 26
- Issue: 6
- Year: 2007
- Summary: A study was conducted to evaluate the influence of tillage systems on the incidence of Tilletia indica (Karnal bunt) in a rice-wheat system that is the most popular and prevalent crop rotation in the Indo-Gangetic Plains of India. A total of 906 samples, were drawn from the farmers' fields during the month of April during the 3 years study period. The samples collected were 365, 171, and 370 from the zero tillage (ZT), furrow irrigated raise bed system (FIRBS), and conventional till (CT) sown fields, respectively. The disease incidence, incidence index and percent-infected samples were calculated and statistically analyzed. Results showed that ZT fields had the lowest mean incidence of Karnal bunt, i.e. 9.00% infected samples in comparison to 18.10% and 16.20% under FIRBS and CT, respectively. Similarly, the average infection in infected samples was equal in FIRBS and CT, but the samples from ZT were statistically lower. KB incidence index showed a similar trend. ZT has shown a reduced incidence of KB in comparison to the raised bed (FIRBS) and CT systems. If ZT is followed for a period of a few years, it may help in reducing the effective soil inoculum and reducing the disease incidence over time.
- Authors:
- Yang, W.
- Wu, Y.
- Tu, X.
- Tu, N.
- Zhou, W.
- Yi, Z.
- Source: Research of Agricultural Modernization
- Volume: 28
- Issue: 4
- Year: 2007
- Summary: The effects of tillage and no-tillage, and different rates of straw mulching (without, half and full) on soil nutrient content and drought resistance of maize on dry land in Hunan Province (China) were determined. It was found that straw mulching promoted growth and development of maize in normal year (2004) but did not reduce the effect of high temperature and drought and prolonged filling stage 2-4 d in high temperature and drought year (2005). Cultivation measures slightly affected the growth and development of maize. No-tillage prolonged growth duration for around 2 days under high temperature and drought condition. Straw mulching increased plant height, leaf area, dry matter weight, 1000-grain weight and yield. The effects of full-straw mulching were better than those of half-straw mulching. Under the same mulch rates, the effect of tillage was better than no-tillage. The organic matter, readily available K and available P in soil were increased by straw mulching, which was more evident under no-tillage condition although soil organic matter content was slightly decreased without straw mulching. The soil water content was increased by straw mulching, and the effect of full-straw mulching was better than that of half-straw mulching. These results showed that straw mulching can alleviate the harmful effect of drought to a certain extent, and at the same time can increase soil nutrient content. Moreover, the combined effect of straw mulching and no-tillage on increasing soil nutrient content was more evident.
- Authors:
- Souza, R. A.
- Crispino, C. C.
- Franchini, J. C.
- Torres, E.
- Hungria, M.
- Source: Soil & Tillage Research
- Volume: 92
- Issue: 1/2
- Year: 2007
- Summary: The objective of this work was to identify soil parameters potentially useful to monitor soil quality under different soil management and crop rotation systems. Microbiological and chemical parameters were evaluated in a field experiment in the State of Parana, southern Brazil, in response to soil management [no-tillage (NT) and conventional tillage (CT)] and crop rotation [including grain (soybean, S; maize, M; wheat, W) and legume (lupin, L.) and non-legume (oat, O) covers] systems. Three crop rotation systems were evaluated: (1) (O/M/O/S/W/S/L/M/O/S), (2) (O/S/L/M/O/S/W/S/L/M), and (3) (O/S/W/S/L/M/O/M/W/M), and soil parameters were monitored after the fifth year. Before ploughing, CO 2-emission rates were similar in NT and CT soils, but plough increased it by an average of 57%. Carbon dioxide emission was 13% higher with lupin residues than with wheat straw; decomposition rates were rapid with both soil management systems. Amounts of microbial biomass carbon and nitrogen (MB-C and MB-N, respectively) were 80 and 104% higher in NT than in CT, respectively; however, in general these parameters were not affected by crop rotation. Efficiency of the microbial community was significantly higher in NT: metabolic quotient ( qCO 2) was 55% lower than in CT. Soluble C and N levels were 37 and 24% greater in NT than in CT, respectively, with no effects of crop rotation. Furthermore, ratios of soluble C and N contents to MB-C and MB-N were consistently lower in NT, indicating higher immobilization of C and N per unit of MB. The decrease in qCO 2 and the increase in MB-C under NT allowed enhancements in soil C stocks, such that in the 0-40 cm profile, a gain of 2500 kg of C ha -1 was observed in relation to CT. Carbon stocks also varied with crop rotation, with net changes at 0-40 cm of 726, 1167 and -394 kg C ha -1 year, in rotations 1, 2 and 3, respectively. Similar results were obtained for the N stocks, with 410 kg N ha -1 gained in NT, while crop rotations 1, 2 and 3 accumulated 71, 137 and 37 kg of N ha -1 year -1, respectively. On average, microbial biomass corresponded to 2.4 and 1.7% of the total soil C, and 5.2 and 3.2% of the N in NT and CT systems, respectively. Soil management was the main factor affecting soil C and N levels, but enhancement also resulted from the ratios of legumes and non-legumes in the rotations. The results emphasize the importance of microorganisms as reservoirs of C and N in tropical soils. Furthermore, the parameters associated with microbiological activity were more responsive to soil management and crop rotation effects than were total stocks of C and N, demonstrating their usefulness as indicators of soil quality in the tropics.
- Authors:
- Source: Climatic Change
- Volume: 80
- Issue: 1
- Year: 2007
- Summary: Rates of soil C sequestration have previously been estimated for a number of different land management activities, and these estimates continue to improve as more data become available. The time over which active sequestration occurs may be referred to as the sequestration duration. Integrating soil C sequestration rates with durations provides estimates of potential change in soil C capacity and more accurate estimates of the potential to sequester C. In agronomic systems, changing from conventional plow tillage to no-till can increase soil C by an estimated 16 ± 3%, whereas increasing rotation intensity can increase soil C by an estimated 6 ± 3%. The increase in soil C following a change in rotation intensity, however, may occur over a slightly longer period (26 yr) than that for tillage cessation (21 yr). Sequestration strategies for grasslands have, on average, longer sequestration durations (33 yr) than for croplands. Estimates for sequestration rates and durations are mean values and can differ greatly between individual sites and management practices. As the annual sequestration rate declines over the sequestration duration period, soil C approaches a new steady state. Sequestration duration is synonymous with the time to which soil C steady state is reached. However, soils could potentially sequester additional C following additional changes in management until the maximum soil C capacity, or soil C saturation, is achieved. Carbon saturation of the soil mineral fraction is not well understood, nor is it readily evident. We provide evidence of soil C saturation and we discuss how the steady state C level and the level of soil C saturation together influence the rate and duration of C sequestration associated with changes in land management.
- Authors:
- Goswami, S. B.
- Saha, S.
- Dutta, S.
- Source: National Seminar on Ecorestoration of Soil and Water Resources Towards Efficient Crop Production
- Year: 2007
- Summary: On-farm field experiments were undertaken in Chakdah Block, West Bengal, India, to study the impact of surface sowing, sowing by zero till seed drill (ZT) and conventional sowing with normal tillage (CT) in lowland rice fields on the growth and yield performances of wheat cv. 'UP 262', sown in the 1st, 3rd and 4th weeks of November during 2005-06 and 2006-07. For sowing under zero till, the seed rate was high (150 kg/ha). The depth of irrigation for ZT was 4 cm (3 h/bigha) compared to CT of 6 cm (4.5 h/bigha). Three irrigations were applied at crown root initiation, maximum tillering and flowering stages. The wheat plant height, tillering, panicle length, grains per spike and test weight were significantly affected by ZT and surface sowing compared to CT. Effective tiller production was higher under ZT with 3 irrigations than ZT with 2 irrigations or surface sowing. ZT with 3 irrigations (226 mm total water use) recorded the highest grain yield of 24.6 q/ha, which was a 21.8% yield increase over CT with 3 irrigations (243 mm total water use). ZT with 2 irrigations (189 mm total water use) decreased the grain yield by 111.8% over ZT with 3 irrigations. The water use efficiency was higher (8.5-8.71 kg ha -1 mma -1) under ZT with 3 irrigations over ZT with 2 irrigations or CT with 3 irrigations.
- Authors:
- Nicolardot, B.
- Labreuche, J.
- Grehan, E.
- Merckx, R.
- Oorts, K.
- Source: Soil & Tillage Research
- Volume: 95
- Issue: 1-2
- Year: 2007
- Summary: The greenhouse gases CO2 and N2O emissions were quantified in a long-term experiment in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated during 32 years in plots under a maize-wheat rotation. Continuous CO2 and periodical N2O soil emission measurements were performed during two periods: under maize cultivation (April 2003-July 2003) and during the fallow period after wheat harvest (August 2003-March 2004). In order to document the dynamics and importance of these emissions, soil organic C and mineral N, residue decomposition, soil potential for CO2 emission and climatic data were measured. CO2 emissions were significantly larger in NT on 53% and in CT on 6% of the days. From April to July 2003 and from November 2003 to March 2004, the cumulated CO2 emissions did not differ significantly between CT and NT. However, the cumulated CO2 emissions from August to November 2003 were considerably larger for NT than for CT. Over the entire 331 days of measurement, CT and NT emitted 3160 +/- 269 and 4064 +/- 138 kg CO2-C ha(-1) respectively. The differences in CO2 emissions in the two tillage systems resulted from the soil climatic conditions and the amounts and location of crop residues and SOM. A large proportion of the CO2 emissions in NTover the entire measurement period was probably due to the decomposition of old weathered residues. NT tended to emit more N2O than CTover the entire measurement period. However differences were statistically significant in only half of the cases due to important variability. N2O emissions were generally less than 5 g N ha(-1) day(-1), except for a few dates where emission increased up to 21 g N ha(-1) day(-1). These N2O fluxes represented 0.80 +/- 0.15 and 1.32 +/- 0.52 kg N2O-N ba(-1) year(-1) for CT and NT, respectively. Depending on the periods, a large part of the N2O emissions occurred was probably induced by nitrification, since soil conditions were not favorable for denitrification. Finally, for the period of measurement after 32 years of tillage treatments, the NT system emitted more greenhouses gases (CO2 and N2O) to the atmosphere on an annual basis than the CT system. (C) 2006 Elsevier B.V. All rights reserved.
- Authors:
- Mitchell, J. P.
- Horwath, W. R.
- Veenstra, J. J.
- Source: Soil Science Society of America Journal
- Volume: 71
- Issue: 2
- Year: 2007
- Summary: Conservation tillage (CT) and cover cropping (CC) are agricultural practices that may provide solutions to address water and air quality issues arising from intensive agricultural practices. This study investigated how CT and CC affect soil organic matter dynamics in a cotton(Gossypium hirsutum L.)-tomato (Lycopersicon esculentum Mill.) rotation in California's San Joaquin Valley. There were four treatments: conservation tillage, no cover crop (CTNO); conservation tillage with cover crop (CTCC); standard tillage, no cover crop (STNO); and standard tillage with cover crop (STCC). After 5 yr, the top 30 cm of soil in CTCC had an increase of 4500 kg C ha(-1), compared with an increase of 3800 kg C hat in STCC from initial soil C content in 1999. To enhance our understanding of C dynamics in CT systems, we pulse-labeled cotton with (CO2)-C-13 in the field and followed the decomposition of both the roots and the shoots through three physical fractions: light fraction (LF), which tends to turnover quickly, and two relatively stable C pools-intraaggregate LF (iLF) and mineral-associated carbon (mC). Soil under CT treatments retained more of the cotton-residue-derived C in LF and iLF than ST 3 mo after placement in the field. These differences disappeared after 1 yr, however, with no discernable differences between CT and ST regardless of CC. In California's Mediterranean climate, CT alone does not accumulate or stabilize more C than ST in tomato-cotton rotations, and the addition of cover crop biomass is more important than tillage reduction for total soil C accumulation.
- Authors:
- Li, F.
- Ma, Q.
- Wang, Z.
- Li, X.
- Source: Soil & Tillage Research
- Volume: 95
- Issue: 1
- Year: 2007
- Summary: The effects of cultivation and overgrazing on soil quality in arid regions have been rarely addressed. This study investigated the roles of cropping and grazing in soil organic C pools and aggregate stability at 0-20 cm depth by comparing conventional grazing (non-fenced ever), intensive grazing (fenced for 22 years) and cropping (cultivated for 40 years) in the arid Hexi Corridor of northwestern China. Total soil organic C (TOC) under non-fenced grazing was 21.6 g kg-1 (or 52.9 Mg ha-1), which was 19.9% (or 13.2% mass per area) lower than that under fenced grazing, because of lower stable organic C fraction (0.25 mm) in total aggregates and mean weight diameter were 15% and 0.28 mm under cropping, significantly lower than 65% and 3.11 mm under non-fenced grazing and 65% and 2.84 mm under fenced grazing. The aggregates of >1 mm were almost entirely demolished under cropping when subjected to wet sieving. Reduction of soil carbohydrates under cropping was closely related to the decline in aggregate water-stability. The negative effects of cropping on soil organic C pool and aggregate water-stability may suggest that cropping on this arid grassland is not sustainable unless no-tillage is adopted. In favor of increasing soil carbohydrates and maintaining soil aggregation, fenced-grazing would be a better option than cropping and non-fenced grazing for the management of arid grasslands.
- Authors:
- Qu, A.
- Rhinhart, K.
- Petrie, S.
- Machado, S.
- Source: Soil & Tillage Research
- Volume: 94
- Issue: 2
- Year: 2007
- Summary: Conventional tillage winter wheat (Triticum aestivum) (WW)-summer fallow reduces soil productivity and increases soil erosion. Conservation tillage management, together with intensive cropping may have the potential to reverse these sustainability concerns. The objective of this study was to determine the effects of conventional tillage (CT) and no-tillage (NT) systems on grain yield of long-term annual cropping of monoculture WW, spring wheat (SW), and spring barley (Hordeum vulgare) (SB) grown with or without fertilizer, in the Pacific Northwest region of the USA. In unfertilized crops, grain yield of WW, SW, and SB was 15%, 25%, and 50% higher, respectively, in CT than in NT plots, an indication of the involvement of yield limiting factors under the NT cropping system. When fertilized, there were no significant differences in grain yield of WW. Yields of SW and SB, however, remained 21% and 15% higher, respectively, in CT than in NT, an indication that factors other than fertility were involved. These results suggest that in order for NT management to be widely adopted by area growers, the yield-limiting factors need to be addressed.
- Authors:
- Robertson, G. P.
- Grandy, A. S.
- Source: Ecosystems
- Volume: 10
- Issue: 1
- Year: 2007
- Summary: Restoring soil C pools by reducing land use intensity is a potentially high impact, rapidly deployable strategy for partially offsetting atmospheric CO2 increases. However, rates of C accumulation and underlying mechanisms have rarely been determined for a range of managed and successional ecosystems on the same soil type. We determined soil organic matter (SOM) fractions with the highest potential for sequestering C in ten ecosystems on the same soil series using both density- and incubation-based fractionation methods. Ecosystems included four annual row-crop systems (conventional, low input, organic and no-till), two perennial cropping systems (alfalfa and poplar), and four native ecosystems (early successional, midsuccessional historically tilled, midsuccessional never-tilled, and late successional forest). Enhanced C storage to 5 cm relative to conventional agriculture ranged from 8.9 g C m(-2) y(-1) in low input row crops to 31.6 g C m(-2) y(-1) in the early successional ecosystem. Carbon sequestration across all ecosystems occurred in aggregate-associated pools larger than 53 mu m. The density-based fractionation scheme identified heavy-fraction C pools (SOM > 1.6 g cm(-3) plus SOM 250 mu m), as having the highest potential C accumulation rates, ranging from 8.79 g C m(-2) y(-1) in low input row crops to 29.22 g C m(-2) y(-1) in the alfalfa ecosystem. Intra-aggregate light fraction pools accumulated C at slower rates, but generally faster than in inter-aggregate LF pools. Incubation-based methods that fractionated soil into active, slow and passive pools showed that C accumulated primarily in slow and resistant pools. However, crushing aggregates in a manner that simulates tillage resulted in a substantial transfer of C from slow pools with field mean residence times of decades to active pools with mean residence times of only weeks. Our results demonstrate that soil C accumulates almost entirely in soil aggregates, mostly in macroaggregates, following reductions in land use intensity. The potentially rapid destruction of macroaggregates following tillage, however, raises concerns about the long-term persistence of these C pools.