- Authors:
- Price, A.
- Saini, M.
- van Santen, E.
- Source: 2005 Southern Conservation Tillage Systems Conference, Oral Proceedings, Clemson University
- Year: 2005
- Summary: An integral component of a conservation-tillage system in corn (Zea mays L.) and cotton (Gossypium hirsutum L.) is the use of a winter cover crop. A field experiment was initiated in 2002 to evaluate winter weed dynamics following various winter cover crops in both continuous cotton and a corn and cotton rotation. Winter cover crops included black oats (Avena strigosa Schreb.); two crimson clover entries (Trifolium incarnatum L.); two cultivars of forage rape (Brassica napus L. var. napus), spring and winter; oil radish (Raphanus sativus var. oleiformis Pers.); three cultivars of turnip ( Brassica rapa L. subsp. rapa); white lupin ( Lupinus albus L.); and a mixture of black oat and lupin. Two-year conservation-tillage rotational sequences included conventionally tilled continuous corn and cotton winter fallow systems as controls. The 10 conservation-tillage, winter cover-crop systems investigated were three continuous cotton systems that alternated a winter legume (lupin or clover), six cotton-corn systems, where lupin preceded cotton and radish, rape, or turnip preceded corn, and a cotton-corn system that had a lupin-black oat mixture as a winter cover crop every year. Use of lupin or 'AU Robin' clover resulted in weed biomass reduction of up to 80% and 54%, respectively, in weed biomass compared to the fallow system. The highest yielding corn-cotton conservation tillage rotation with a winter cover yielded 200 lbs/acre more that the continuous cotton winter fallow system. Continuous conventional corn with winter fallow yielded 30 bu/acre less than the highest yielding 2-yr, conservation tillage winter crop system.
- Authors:
- Whitehead, W. F.
- Sainju, U. M.
- Singh, B. P.
- Source: Plant and Soil
- Volume: 273
- Issue: 1-2
- Year: 2005
- Summary: Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolor L.) and sequester significant amount of atmospheric CO, in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)],. four cover crops [legume (hairy vetch) (Vicia villosa Roth), nonlegume (rye) (Secale cereale L), hairy vetch/rye mixture, and winter weeds or no cover crop], and three N fertilization rates (0, 60-65, and 120-130 kg N ha(-1)) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain. their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 In central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic. Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha(-1) but in stalks, it was greater in ST with 60 and 120 kg N ha(-1) than in CT with 0 kg N ha(-1). In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha(-1) than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha(-1) and in sorghum ranged from 3.4 to 7.2 Mg ha(-1). Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0-10 cm depth was greater in vetch with 0 kg N ha(-1) or in vetch/rye with 120-130 kg N ha(-1) than in weeds with 0 and 60 kg N ha(-1) but at 10-30 cm, it was greater in rye with 120-130 kg N ha(-1) than in weeds with or without rate. In ST, soil organic C at 0-10 cm was greater in rye with 120-130 kg N ha(-1) than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha(-1). Soil organic C at 0-10 and 10-30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 6065 kg N ha(-1) can sustain C accumulation in cotton lint and sorghum grain and increase C storage soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.
- Authors:
- Sturny, W. G.
- Ramseier, L.
- Chervet, A.
- Tschannen, S.
- Source: Revue Suisse d'Agriculture
- Volume: 12
- Issue: 5
- Year: 2005
- Summary: Over the last ten years, conventional plough tillage has been compared to no-tillage on six crop rotation plots in the long-term field trial Oberacker at the Inforama Ruetti in Zollikofen, Switzerland. The deep cambisol of the trial plots contains 15% clay and 3% organic matter. The absence of tillage operations in no-tillage makes a more complex strategy for weed control necessary. Options such as a balanced crop rotation, permanent soil cover, adapted crop residue management and immediate seeding of subsequent crops are used alongside chemical, mechanical, and thermal strategies of weed control. Land use is sustainable in the no-tillage system: No-tilled soil has a higher structural stability and load capacity while being markedly less prone to erosion; less machine usage and traffic reduce (fuel) costs. After seven years of no-tillage, continuous release of soil-borne nitrogen leads to crop yields and qualities at least equal to those obtained with conventional tillage. Two challenges remain only partly solved: (a) the greater dependence on herbicides such as glyphosate and (b) the greater risk of mycotoxin formation in no-tilled winter cereal crops that follow maize. Remedies include adaptations of the crop rotation, chopping of residual maize straw/stalks and cropping of cereal varieties less susceptible to fusarium. In conclusion, no-tillage contributes substantially to maintaining soil fertility on a long-term basis.
- Authors:
- Shea, K. L.
- Gregory, M. M.
- Bakko, E. B.
- Source: Renewable Agriculture and Food Systems
- Volume: 20
- Issue: 2
- Year: 2005
- Summary: We compared soil characteristics, runoff water quantity and nutrient fluxes, energy use and productivity of three farm types in an unusually dry farming season: conventional (continuous corn and deep tillage), rotation (5-year corn-soybean-oats/ alfalfa-alfalfa-alfalfa rotation with tillage 2/5 years) and no-till (corn-soybean with no cultivation). Soil organic matter content was highest on the rotation farm, followed by the no-till farm, and lowest on the conventional farm. Nitrate content of the soil did not differ significantly among the three farms, although the conventional farm had a much higher input of fertilizer nitrogen. Soil penetrometer resistance was lower and percent soil moisture was higher in the no-till and rotation systems compared to the conventional farm. Soil macroinvertebrate abundance and diversity were highest on the no-till farm, followed by the rotation farm. No invertebrates were found in the soil of the conventional farm. The conventional farm had the highest runoff volume per cm rain and higher nitrogen (N) loss in runoff when compared to the rotation and no-till farms, as well as a higher phosphorus (P) flux in comparison to the no-till farm. These results indicate that perennial close-seeded crops (such as alfalfa) used in crop rotations, as well as plant residue left on the surface of no-till fields, can enhance soil organic content and decrease runoff. The lower soil penetrometer resistance and higher soil moisture on the rotation and no-till farms show that conservation tillage can increase soil aggregation and water infiltration, both of which prevent erosion. Furthermore, crop rotation, and particularly no-till, promote diverse invertebrate populations, which play an important role in maintaining nutrient cycling and soil structure. Crop rotation and no-till agriculture are less fossil-fuel intensive than conventional agriculture, due to decreased use of fertilizers, pesticides and fuel. In this unusually dry year they provided superior corn and soybean yields, most likely due to higher soil moisture as a result of greater water infiltration and retention associated with cover crops (rotation farm) and crop residue (no-till farm).
- Authors:
- Ahmad, R.
- Jabbar, A.
- Ehsanullah
- Nazir, M. S.
- Source: Pakistan Journal of Agricultural Sciences
- Volume: 42
- Issue: 1/2
- Year: 2005
- Summary: A field experiment was conducted during 1998/99 and 1999/2000 to evaluate the performance of diversified rice-based relay cropping systems at zero and conventional tillage under strip plantation on a sandy clay loam soil in Faisalabad, Pakistan. The treatments comprised rice/fallow and rice intercropped with wheat, barley, forage oats, gram [ Cicer arietinum], lentil, linseed, fenugreek, sunflower, rape, forage maize and Egyptian clover [ Trifolium alexandrinum]. All rice-based relay cropping were more productive and economically viable than rice/fallow. However, rice intercropped with grain or forage legumes (such as fenugreek, gram, lentil and Egyptian clover) were more superior to that intercropped with non-legumes (such as wheat, barley, forage oats, rape, sunflower and forage maize) in terms of sustainability, total rice grain yield equivalent (TRGYE) and net field benefits under both zero and conventional tillage. Rice/fenugreek relay cropping recorded the highest TRGYEs of 7.48 and 9.27 t/ha and net monetary gains of Rs. 40 620 and 45 120/ha under zero and conventional tillage, respectively.
- Authors:
- Cooper, R. J.
- Carroll, J. P.
- Cederbaum, S. B.
- Source: Conservation Biology
- Volume: 18
- Issue: 5
- Year: 2004
- Summary: Among the major agricultural crops in the southeastern United States, cotton (Gossypium hirsutum L.) generally provides the least suitable habitat for most early successional songbirds. Newer cropping approaches, such as use of conservation tillage and stripcover cropping, offer hope for improving the ecological value of cotton fields. We examined the effects of clover stripcover cropping with conservation tillage versus conventionally grown cotton with either conventional or conservation tillage on avian and arthropod species composition and field use in east-central Georgia. Stripcover fields had higher bird densities and biomass and higher relative abundance of arthropods than both conservation tillage and conventional fields. During migration and breeding periods, total bird densities on stripcover fields were 2-6 times and 7-20 times greater than on conservation and conventional fields, respectively. Abundance and biomass for epigeal arthropods were also greatest on stripcover fields during much of the breeding season. Although the clover treatment attracted the highest avian and arthropod densities, conservation fields still provided more wildlife and agronomic benefits than conventional management. Our findings suggest that both conservation tillage and stripcropping systems will improve conditions for birds in cotton, with stripcropped fields providing superior habitat. The reduction of inputs possible with the clover system could allow farmers to lower costs associated with conventional cotton production by $282-317/ha. This reduction of input, coupled with similar or possibly increased yield over conventional systems makes stripcover cropping not only a good choice for reducing negative impacts on wildlife and surrounding ecosystems, but also an economically desirable one.
- Authors:
- USDA-ARS
- Clapp, C. E.
- Linden, D. R.
- Allmaras, R. R.
- Source: Soil Science Society of America Journal
- Volume: 68
- Issue: 4
- Year: 2004
- Summary: Soil organic carbon (SOC) is sensitive to management of tillage, residue (stover) harvest, and N fertilization in corn (Zea mays L.), but little is known about associated root biomass including rhizodeposition. Natural C isotope abundance ({delta}13C) and total C content, measured in paired plots of stover harvest and return were used to estimate corn-derived SOC (cdSOC) and the contribution of nonharvestable biomass (crown, roots, and rhizodeposits) to the SOC pool. Rhizodeposition was estimated for each treatment in a factorial of three tillage treatments (moldboard, MB; chisel, CH; and no-till, NT), two N fertilizer rates (200 and 0 kg N ha-1), and two corn residue managements. Treatments influenced cdSOC across a wide range (6.8-17.8 Mg C ha-1). Nitrogen fertilization increased stover C by 20%, cdSOC by only 1.9 Mg C ha-1, and increased rhizodeposition by at least 110% compared with that with no N fertilizer. Stover harvest vs. stover return reduced total source carbon (SC) by 20%, cdSOC by 35%, and total SOC. The amount of stover source carbon (SSC) responded to tillage (MB > CH > NT), but tillage affected the amount of cdSOC differently (NT > CH > MB). Total SOC was maintained only by both N fertilization and stover return during the 13-yr period. The ratio of SC in the nonharvestable biomass to SSC ranged from 1.01 to 3.49; a ratio of 0.6 conforms to a root-to-shoot ratio of 0.4 when the root biomass includes 50% rhizodeposits. Tillage controlled the fraction of SC retained as cdSOC (i.e., humified; 0.26 for NT and 0.11 for MB and CH), even though N fertilization, stover harvest, and tillage all significantly influenced SC. Decomposition of labile rhizodeposits was a major component of the nonhumified fraction. Rhizodeposition was as much as three times greater than suggested by laboratory and other controlled studies. To understand and manage the entire C cycle, roots and rhizodeposition must be included in the analysis at the field level.
- Authors:
- Rich, J.
- Wiatrak, P.
- Katsvairo, T.
- Marois, J.
- Wright, D.
- Source: Proceedings of the 26th Southern Conservation Tillage Conference for Sustainable Agriculture, Raleigh, North Carolina, USA, 8-9 June, 2004
- Year: 2004
- Summary: Soils in the southeast have low organic matter content, low native fertility, and low water holding capacity which has resulted in stagnant yields. Long term studies across the country (Morrow, Sanborn, Magruder, Old Rotation [Auburn]) have shown that land coming out of long term perennial grasses often has an organic matter content of over 4% and decreases as it stays in continuous annual cropping and levels off after 80-100 years once the level reaches about 1 1/2% with use of conservation tillage, cover crops, proper rotation, and modern fertility practices. Years of research in the southeast have shown that perennial grasses such as bahiagrass can help improve soil structure and reduce pests such as nematodes and increase crop yields, sometimes dramatically. Research in the southeast with this perennial grasses grown in rotation with crops has shown higher yields (50% more groundnuts than under conventional annual cropping systems), increased infiltration rates (more than 5 times faster), higher earthworm numbers (thousands per acre vs. none in many cases), and a more economically viable (potential for 3-5 times more profit) cropping system. Diversification into livestock can add another dimension to the farming system making it more intensive and provide a readily available use for perennial grasses.
- Authors:
- Silva, E. M. da
- Rauber, J. C.
- Azevedo, J. A. de
- Reatto, A.
- Source: Boletim de Pesquisa e Desenvolvimento - Embrapa Cerrados
- Issue: 101
- Year: 2003
- Summary: The no-till system have positive impacts in soil and water conservation. This work aims to evaluate the main modifications on the soil physical properties caused by no-till system, carried out during 3, 6, and 12 years under rainfed conditions. The cases of direct drilling for five years under irrigated condition, a conventional tillage system, and a soil condition under natural Biome Cerrado were also evaluated in the Ampessan farm, Cabeceiras, Goias, Brazil. The soil physical characteristics were evaluated by samples taken from the following layers: 0-5, 2.5-7.5, 5-10, 10-15, 20-25, 42.5-47.5 and 72.5-77.5 cm. The infiltration characteristics were evaluated at 12 and 80 cm soil depth, using the Guelph permeameter to determine the field saturated hydraulic conductivity. The results showed that the intense soil mechanization on irrigated condition favoured a significant decrease in the field saturated hydraulic conductivity in the layers near to the soil surface. There was a tendency for higher water availability in the cultivated soils, in relation to that under natural soil environment, up to 22.5 cm soil depth.
- Authors:
- Turvey, C. G.
- Kay, B. D.
- Joseph, S.
- Weersink, A.
- Source: CAFRI: Current Agriculture, Food and Resource Issues
- Volume: 4
- Year: 2003
- Summary: The objective of the 1997 Kyoto agreement was to limit greenhouse gas (GHG) emissions among signatory countries and thereby slow global warming. Under the agreement, Canada has committed itself to reduce GHGs over the next decade by 6 percent from estimated 1990 levels. Debate has now begun on the appropriate government policies that will induce the desired GHG reductions. Regulations could be in the form of direct controls or economic incentives, such as a subsidy/tax system or an emission trading system. The success of the U.S. emission market for SO2 (Schmalenseeet al., 1998) has generated growing interest in the use of a similar market mechanism for carbon (Holmes and Friedman, 2000). The existence of a carbon credit market presents the agricultural sector with another potential revenue source (Sandor and Skees, 1999). While agriculture contributes approximately 10 percent of Canada’s greenhouse gas emissions, it also has the potential to sequester carbon through strategies such as zero tillage, reduced summer fallow and improved grazing. These sequestration activities could be incorporated into an emission trading system and create a “carbon credit” for each unit of CO2 that is removed from the atmosphere. Firms with high emission reduction costs could then buy these credits rather than bear the large abatement costs associated with reducing their GHG emission levels. The perception is that the marginal cost of abatement for agriculture is less than that for other sectors (McCarl and Schneider, 2000). Thus, farmers may be able to profit by selling credits for activities that sequester carbon. An example of such a transaction was the purchase of carbon credits from Iowa farmers who adopted no-till by a consortium of Canadian energy companies (GEMCO) (Lessiter, 1999). Whether the development of a carbon credit market will affect the management decisions of an Ontario crop farmer is the focus of this study.