- Authors:
- Muchaonyerwa, P.
- Chiduza, C.
- Dube, E.
- Source: Soil & Tillage Research
- Volume: 123
- Year: 2012
- Summary: A study was conducted to determine the effects of oat (Avena sativa) and grazing vetch (Vicia dasycapa) winter cover crops and fertilization regimes on soil organic matter (SOM) in an irrigated maize-based (Zea mays L.) conservation agriculture (CA) system following four years of continuous practice. Separate plots of oat and grazing vetch cover crops were grown in winter and then maize was planted in all plots in the following summer season. The four fertilization regimes used were: (i) fertilizer applied to the cover crops and the maize crop (F1), (ii) fertilizer applied to cover crops only (F2), (iii) fertilizer applied to the maize crop only (F3) and (iv) no fertilizer applied (F4). Control plots (weedy fallows) were included and the treatments were laid out in a randomized complete block design with three replications. Soil samples from 0-5, 5-20 and 20-50 cm depths were analyzed for total SOM, particulate organic matter (POM) fractions, hot water soluble C (HWC) and C-associated with water stable macro- and micro-aggregates (WSAC). While total SOM was more concentrated in the 0-5 cm soil depth across treatments, a lack of maize fertilization (F2 and F4 regimes) significantly (P
- Authors:
- Ward, P. R.
- Cordingley, N.
- Flower, K. C.
- Weeks, C.
- Source: Field Crops Research
- Volume: 132
- Year: 2012
- Summary: Cover crops have been successfully integrated into conservation agriculture systems in many parts of the world. They are primarily used to provide surface cover as well as to improve soil fertility and suppress weeds. Black oat (Avena strigosa Schreb.) is a widely used cereal cover crop with a rapid growth and high biomass production. It is being trialled as a cover crop for conservation agriculture systems in southwestern Australia, which has a Mediterranean climate with a short winter growing season and where terminal drought is common. Only one crop can be grown in a year and, as such, the long term benefits of including a cover crop in this system must outweigh the loss in income by not growing a cash crop. This study, which was part of a larger conservation agriculture cropping systems trial, examined the effect of different crop sequences, which included oat cover crops and grass pasture, on soil nitrogen mineralisation and weed control. A related paper in this Special Issue examined the effect of cover crops on the soil water balance. We hypothesised that the inclusion of high-biomass oat cover crops in a cereal-dominated cropping system would (i) result in less immobilisation of soil nitrogen compared with that of harvested cereals, and (ii) significantly improve the weed control. We show that soil N mineralisation following oat cover crops was similar to that following wheat and barley. Therefore, cash crops grown after oat cover crops would require similar levels of nitrogen to those grown after harvested cereals. Oat cover crops and grass pasture were found to be very effective in controlling weeds, even in continuous cereal rotations. Two consecutive years of cover crop were required for good annual ryegrass (Lolium rigidum Gaud.) control in a predominantly cereal rotation. Timing of when the cover crops were killed by herbicide was crucial for good weed control, as failure to prevent weed seed set resulted in significantly reduced weed control. Also, late killing of the cover crop reduced soil water storage. The inclusion of an oat cover crop in the rotation reduced the three-year average gross margin; however, the profitability of these crops needs to be evaluated over a longer period. To date, managed pasture, with herbicide control of weed seed set, appears to be a better option than oat cover crops because of the relatively low cost and increased soil water storage. (C) 2011 Elsevier B.V. All rights reserved.
- Authors:
- Vogt, G. A.
- da Veiga, M.
- Balbinot Junior, A. A.
- Spagnollo, E.
- Source: Ciência Rural
- Volume: 42
- Issue: 3
- Year: 2012
- Summary: The objective of this study was to evaluate in the fifth year of experimentation, the effect of winter soil uses on residual straw on the soil, physical and chemical soil attributes and grain yield of common bean cultivated in succession. An experiment was carried out in the North Plateau of Santa Catarina State, Brazil, from May 2006 to April 2011. Five winter soil uses were investigated: 1) multicropping with black oat + ryegrass + common vetch without grazing (multicropping cover); 2) the same multicropping, with grazing and 100kg ha(-1) of nitrogen year(-1), applied during the growing period (pasture with N); 3) the same multicropping, with grazing and without nitrogen fertilization (pasture without N); 4) oil seed radish, without grazing (oil seed radish); and 5) natural vegetation, without grazing (fallow). In the fifth year of experimentation, multicropping cover treatment inputted greater straw on the soil, but it was not observed expressive differences in soil attributes among the five winter soil uses. Cover crops, annual pasture and winter fallow did not affect the grain yield of common bean cultivated in succession.
- Authors:
- Higginbotham, R. W.
- Jones, S. S.
- Carter, A. H.
- Source: Sustainability
- Volume: 3
- Issue: 8
- Year: 2011
- Summary: In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to evaluate current cultivars under late-planted no-till fallow systems to identify whether current breeding schemes in tilled fallow systems could select productive cultivars in late-planted no-till fallow systems. Thirty cultivars were planted in a split-plot design with fallow type as the main plot and genotype as the sub-plot. Fallow types evaluated were a tilled fallow system and a late planted no-till fallow system. Data were collected on heading date, plant height, grain volume weight, grain yield, and grain protein content. Analysis of variance was conducted on data across locations. Results were significant for all traits except for grain protein content. The late-planted no-till fallow system headed 16 days later was 5 cm shorter, yielded 36% less, and had a grain volume weight 3% less than the tilled fallow system. The lower yield and grain volume weight potential is hypothesized to be due to the 16 day delay in heading date leading to warmer temperatures during grain fill and a shorter duration. In order to breed wheat to be highly productive under a late-planted no-till fallow system, directly selecting in this system for early spring growth and earlier heading dates will be essential.
- Authors:
- Smith, P.
- Hillier, J.
- Walter, C.
- Malin, D.
- Garcia-Suarez, T.
- Mila-i-Canals, L.
- Source: Environmental Modelling & Software
- Volume: 26
- Issue: 9
- Year: 2011
- Summary: Agriculture and deforestation contribute approximately one third of global greenhouse gas emissions. Major sources of emissions in this sector are from loss of soil carbon due to repeated soil disturbance under typical crop cultivation, fossil fuel use in the production of synthetic fertilisers, direct and indirect soil nitrous oxide emissions from fertiliser application, pesticide manufacture and use, and fossil fuel combustion in machinery use (e.g. tractors, irrigation, etc). Although knowledge of emissions sources aids in the determination of potential mitigation strategies (reduced or no-till methods, use of N-fixing leguminous crops in rotations, use of lower emissions fertilisers), there currently exist limited decision support and knowledge transfer tools to enable the farmer or grower to make choices appropriate to existing management practices. In this article we present a model, and open source software tool called the "Cool Farm Tool" integrating several globally determined empirical models in a greenhouse gas calculator. The software, in requiring inputs of which a farmer typically has good knowledge (and no more), has a specific farm-scale, decision-support focus. Due to its use of only readily available farm data, there is considerable scope for its use in global surveys to inform on current practices and potential for mitigation.
- Authors:
- Jossi, W.
- Zihlmann, U.
- Heijden, M. van der
- Anken, T.
- Dorn, B.
- Source: Agrarforschung Schwei
- Volume: 18
- Issue: 10
- Year: 2011
- Summary: Earthworm activity improves soil fertility. In arable crop rotations highest earthworm populations are usually found in leys. The impact of tillage system and tillage intensity on earthworm populations was studied in the two long term trials at Burgrain (Albertswil LU) and at Hausweid (Aadorf TG). At Burgrain having a crop rotation lasting six years and including a ley, no significant difference of earthworm biomass was found between ploughed plots and plots with in the sampling period 2004-2008 in the tillage system using minimum tillage (mulch drilling for oilseed rape and sowing with a rotary band cultivator rotary band seeding for silage maize) (IP extensive) compared to ploughing in both, the organic as well as the integrated production (IP intensive). In contrast, at Hausweid having a four years crop rotation at Hausweid without ley, earthworm populations differed significantly depending on tillage system and tillage intensity after 21 years of the trial. Earthworm biomass reached 330 g per m 2 in the permanent grassland adjacent to the trial whereas it was reduced by 50% in the no-till and even by 80% in the ploughed plots. Additionally, average earthworm species diversity in permanent grassland and no-till was 30% higher than in ploughed tillage system. These findings confirm the positive impact of no-till on the increase of earthworm populations and species diversity.
- Authors:
- Nenova, L.
- Ivanova, I.
- Stoyanova, S.
- Source: Banat's Journal of Biotechnology
- Volume: 2
- Issue: 4
- Year: 2011
- Summary: A study was conducted from 2008 to 2010 in Bulgaria to evaluate the weed infestation in field crops, grown in crop rotation by organic farming. Beans cv. Obraztsov chiflik, wheat cv. Yantur, soyabeans cv. Zarya, and winter oats line RS-2 were studied. Two variants were used and foliar fertilization using Humustim in four replications, the size of harvesting plot was 52. 5 m 2. Crop rotation technological schemes were applied according to the requirements of the organic farming without using chemicals. During crop rotation, the density of perennial weeds remained relatively constant. In variants with fertilization by Humustim, the total number of weeds decreased compare to those without fertilization. The lowest density of weed infestation was observed in wintering oats, grown after soybeans-100 pcs. /m 2 and in wheat, grown after field beans-122 pcs. /m 2.
- Authors:
- Mendes, I.
- de Castro Lopes, A.
- Nunes, R.
- Gomes de Sousa, D.
- Source: Revista Brasileira de Ciencia do Solo
- Volume: 35
- Issue: 4
- Year: 2011
- Summary: MANAGEMENT SYSTEMS AND THE CARBON AND NITROGEN STOCKS OF CERRADO OXISOL UNDER SOYBEAN-MAIZE SUCCESSION Carbon and N stocks in soils are determined by the balance between addition and losses, and tillage and cropping systems are decisive in this process. This study aimed to evaluate the effect of soil management systems based on tillage, cover crops and P fertilization on C and N stocks in physical fractions of the soil organic matter and on microbial biomass and respiration in a soil after 11 years under soybean-maize rotation. The experiment was initiated in 1999 in an Oxisol with adequate level of available P to obtain form 80 to 90 % of potential yields of annual crops. The experiment was arranged in a split-plot design in randomized blocks, with three management systems based on soil tillage and cover crop (conventional tillage with pearl millet, no-tillage with pearl millet and no-tillage with velvet bean) assigned to the main plots and two P levels (0 and 100 kg ha(-1) yr(-1) of P2O5 as triple superphosphate applied at sowing) in subplots. Soil samples were collected at the grain filling stage of soybean (March 2010), from the soil layers 0-5, 5-10 and 10-20 cm, and subjected to physical fractionation of organic matter and microbial analysis. The no-tillage system resulted in stratification of organic C and N while conventional tillage resulted in a more homogeneous distribution in the 0-20 cm layer. Phosphorus fertilization for 11 years led to an accumulation of organic C and N in the soil, regardless of tillage and cover crop systems. Higher stocks of organic C and total N, higher microbial biomass C and lower microbial respiration were found under no-tillage than conventional tillage, both with pearl millet as cover crop. In the no-tillage systems, greater stocks of organic C and total N, similar microbial biomass C and higher microbial respiration were found with pearl millet as cover crop compared to velvet bean. The conversion rate of C added by crops to soil organic C was 4.0, 8.2 and 14.3 % for conventional tillage with pearl millet and no-tillage with pearl millet and with velvet bean, respectively.
- Authors:
- Raus, L.
- Jitareanu, G.
- Ailincai, C.
- Source: Lucrari Stiintifice, Universitatea de Stiinte Agricole Si Medicina Veterinara "Ion Ionescu de la Brad" Iasi, Seria Agronomie
- Volume: 54
- Issue: 2
- Year: 2011
- Summary: The experiment was conducted at the Didactic Station of the "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Ezareni Farm, during farming years 2007-2009. The experimental site is located in the East part of Romania on a chambic chernozem, with a clay-loamy texture, 6.8 pH units, 3.7% humus content and a medium level of fertilization. The soil has high clay content (38-43%) and is difficult to till when soil moisture is close to the wilting point (12.2%). We have investigated three variants of soil tillage system - conventional tillage, minimum tillage and no-till - in the crop rotation made of wheat and raps. This paper presents the results obtained in winter rape growing as concerns the influence of the tillage method on some soil physical characteristics and yield. Research carried out aimed at developing fundamental knowledge through in-depth inquiries of soil quality indicators of Moldavian Plain, regarding integrated management of soil and water. Research carried out also aimed to quantify the influence of agricultural technologies on physic, hydric, thermic, nutrient and biological soil regime, and ecological impact of these changes on ecological, energetically, hydrological, biogeochemical and breathing soil function, in specific areas of Moldavian Plain. Tillage system modify, at least temporarily, some of the physical properties of soil, such as soil bulk density, penetration resistance, soil porosity and soil structural stability. All the tillage operation was significantly different in their effects on soil properties. The results indicate that soil tillage systems must be adjusted to plant requirements for crop rotation and to the pedoclimatic conditions of the area.
- Authors:
- Jabro, J. D.
- Lartey, R. T.
- Evans, R. G.
- Allen, B. L.
- Sainju, U. M.
- Lenssen, A. W.
- Caesar-TonThat, T.
- Source: Plant and Soil
- Volume: 338
- Issue: 1-2
- Year: 2011
- Summary: Novel management practices are needed to increase dryland soil organic matter and crop yields that have been declining due to long-term conventional tillage with spring wheat ( Triticum aestivum L.)-fallow system in the northern Great Plains, USA. The effects of tillage, crop rotation, and cultural practice were evaluated on dryland crop biomass (stems+leaves) yield, surface residue, and soil organic C (SOC) and total N (STN) at the 0-20 cm depth in a Williams loam (fine-loamy, mixed, superactive, frigid, Typic Argiustolls) from 2004 to 2007 in eastern Montana, USA. Treatments were two tillage practices [no-tillage (NT) and conventional tillage (CT)], four crop rotations [continuous spring wheat (CW), spring wheat-pea ( Pisum sativum L.) (W-P), spring wheat-barley ( Hordeum vulgaris L.) hay-pea (W-B-P), and spring wheat-barley hay-corn ( Zea mays L.)-pea (W-B-C-P)], and two cultural practices [regular (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and ecological (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height)]. Crop biomass and N content were 4 to 44% greater in W-B-C-P than in CW in 2004 and 2005 and greater in ecological than in regular cultural practice in CT. Soil surface residue amount and C and N contents were greater in NT than in CT, greater in CW, W-P, and W-B-C-P than in W-B-P, and greater in 2006 and 2007 than in 2004 and 2005. The SOC and STN concentrations at 0-5 cm were 4 to 6% greater in CW than in W-P or W-B-P in NT and CT from 2005 and 2007. In 2007, SOC content at 10-20 cm was greater in W-P and W-B-P than in W-B-C-P in CT but STN was greater in W-B-P and W-B-C-P than in CW in NT. From 2004 to 2007, SOC and STN concentrations varied at 0-5 cm but increased at 5-20 cm. Diversified crop rotation and delayed planting with higher seed rates and banded N fertilization increased the amount of crop biomass returned to the soil and surface residue C and N. Although no-tillage increased surface residue C and N, continuous nonlegume cropping increased soil C and N levels at the surface layer compared with other crop rotations. Continued return of crop residue from 2004 to 2007 may increase soil C and N levels but long-term studies are needed to better evaluate the effect of management practices on soil C and N levels under dryland cropping systems in the northern Great Plains.