• Authors:
    • Lloveras, J.
    • Santiveri, F.
    • Biau, A.
  • Source: Agronomy Journal
  • Volume: 105
  • Issue: 5
  • Year: 2013
  • Summary: The incorporation of crop stover into the soil improves soil fertility and crop productivity by increasing C sequestration and reducing the emission of greenhouse gases among other parameters. Interactions between crop stover management and N fertilization could help to improve C sequestration while increasing productivity. The objective of this study was to evaluate the impact of incorporating or removing corn (Zea mays L.) stover, in combination with different N fertilization rates (0, 100, 200, and 300 kg N ha(-1)), on corn production, soil organic carbon (SOC), and soil mineral nitrogen (SMN) in high production areas. We performed two field experiments (Exp. 1 and 2) for 3 yr under sprinkler irrigation. Over the duration of the experiment (short-term period), stover management did not affect corn production or SMN levels, while high average grain yields were achieved (16-20 Mg ha(-1)) when N was applied. After 3 yr, removing the stover reduced SOC levels by approximately 0.82 and 1.06 g C m(-2) (0-30-cm depth) in 2012 in Exp. 1 and 2, respectively. The amounts of corn stover incorporated were higher than 16 Mg ha(-1) yr(-1) of dry matter. Our data suggest that returning stover to the soil has a positive short-term impact on soil quality without grain yield penalties. Although selling the stover provides a short-term economic advantage, continuous stover removal may cause significant soil degradation in the future.
  • Authors:
    • Barfoot, P.
    • Brookes, G.
  • Source: GM crops & food
  • Volume: 4
  • Issue: 2
  • Year: 2013
  • Summary: Given the increasing awareness and appreciation of issues such as global warming and the impact of mankind's activities such as agriculture on the global environment, this paper updates previous assessments of the environmental impact of an important and relatively new technology, crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 474 million kg (-8.9%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops [as measured by the indicator the Environmental Impact Quotient (EIQ)] by 18.1%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2011, was equivalent to removing 10.22 million cars from the roads.
  • Authors:
    • Capriel, P.
  • Source: European Journal of Soil Science
  • Volume: 64
  • Issue: 4
  • Year: 2013
  • Summary: In the last 60 years traditional agriculture in industrialized European countries, which had initially been dependent on available natural resources, has shifted towards a massive intensification of nutrient turnover because of cheap energy and low-cost synthetic fertilizers. At the same time farm structure has undergone profound changes, resulting in an increase in the number of specialized farms to the detriment of traditional non-specialized ones. All these trends have had a significant impact on agricultural management. The intensification of agricultural management together with climate change could affect the quantity and quality of soil organic matter (SOM). That could imply decreasing soil fertility, reduced harvest yields, increasing nutrient losses and additional greenhouse gas emission. In order to measure the long-term development of SOM in agricultural soils a monitoring programme was initiated in Bavaria in 1986. The measurements are based on 92 representative plots located on cropland and 21 plots located on managed permanent grassland. Between 1986 and 2007 the monitoring plots have been sampled four times. The monitoring results suggest a decrease of soil organic carbon content, total nitrogen content and C:N ratio in cropland as well as in grassland in Bavaria between 1986 and 2007. Crops and organic fertilizers are together with the initial SOM content the main causes of the observed changes in SOM quantity and quality. A climatic effect could be neither proved nor excluded. The results in Bavaria are consistent with the reported changes in organic carbon of agricultural soils in Austria, Belgium, France, the Netherlands and England. In Bavaria we should expect declining SOM stocks, particularly soil organic carbon, in agricultural soils if the supply of organic matter remains constant or even decreases.
  • Authors:
    • Zhang, Y.
    • Wu, L.
    • Wang, H.
    • Liu, L.
    • Huang, L.
    • Niu, Y.
    • Chai, R.
  • Source: Nutrient Cycling in Agroecosystems
  • Volume: 96
  • Issue: 1
  • Year: 2013
  • Summary: Proper management of synthetic nitrogen (N) fertilizer can reduce direct N2O emission from soil and indirect CO2 emission from production and transportation of synthetic N. In the late 1990s, the average application rates of synthetic N were 212, 207 and 207 kg ha(-1), respectively, for rice, wheat, and maize in China's croplands. But research suggests that the optimal synthetic N application rates for the main grain crops in China should be in the range of 110-150 kg ha(-1). Excessive application of synthetic N has undoubtedly resulted in massive emission of greenhouse gases. Therefore, optimizing N application rates for grain crops in China has a great potential for mitigating the emission of greenhouse gases. Nevertheless, this mitigation potential (MP) has not yet been well quantified. This study aimed at estimating the MP of N2O and CO2 emissions associated with synthetic N production and transportation in China based on the provincial level statistical data. Our research indicates that the total consumption of synthetic N on grain crops in China can be reduced by 5.0-8.4 Tg yr(-1) (28-47 % of the total consumption) if the synthetic N application rate is controlled at 110-150 kg ha(-1). The estimated total MP of greenhouse gases, including direct N2O emission from croplands and indirect CO2 emission from production and transportation of synthetic N, ranges from 41.7 to 70.1 Tg CO2_eq. yr(-1). It was concluded that reducing synthetic N application rate for grain crops in China to a reasonable level of 110-150 kg ha(-1) can greatly reduce the emission of greenhouse gases, especially in the major grain-crop production provinces such as Shandong, Henan, Jiangsu, Hebei, Anhui and Liaoning.
  • Authors:
    • Saad, A. A.
    • Das, S.
    • Sharma, A. R.
    • Bhattacharyya, R.
    • Das, T. K.
    • Pathak, H.
  • Source: European Journal of Agronomy
  • Volume: 51
  • Year: 2013
  • Summary: Sequestration of C in arable soils has been considered as a potential mechanism to mitigate the elevated levels of atmospheric greenhouse gases. We evaluated impacts of conservation agriculture on change in total soil organic C (SOC) and relationship between C addition and storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) crops were grown during the first three years (2008-2011) and in the last year, maize (Zea mays L), wheat and green gram (Vigna radiate L.) were cultivated. Results indicate the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had nearly 28 and 26% higher total SOC stock compared with conventional tillage and bed planting (CT-B) (similar to 5.5 Mg ha(-1)) in the 0-5 cm soil layer. Plots under ZT-B and ZT-F contained higher total SOC stocks in the 0-5 and 5-15 cm soil layers than CT-B plots. Although there were significant variations in total SOC stocks in the surface layers, SOC stocks were similar under all treatments in the 0-30 cm soil layer. Residue management had no impact on SOC stocks in all layers, despite plots under cotton/maize + wheat residue (C/M+W RES) contained similar to 13% higher total SOC concentration than no residue treated plots (N RES; similar to 7.6 g kg(-1)) in the 0-5 cm layer. Hence, tillage and residue management interaction effects were not significant. Although CT-B and ZT-F had similar maize aboveground biomass yields, CT-F treated plots yielded 16% less maize biomass than CT-B plots. However, both wheat and green gram (2012) yields were not affected by tillage. Plots under C/M + W RES had similar to 17, 13, 13 and 32% higher mean cotton, maize, wheat and green gram aboveground biomass yields than N RES plots, yielding similar to 16% higher estimated root (and rhizodeposition) C input in the 0-30 cm soil layer than N RES plots. About 9.3% of the gross C input contributed towards the increase in SOC content under the residue treated plots. However, similar to 7.6 and 10.2% of the gross C input contributed towards the increase in SOC content under CT and if, respectively. Thus, both ZT and partial or full residue retention is recommended for higher soil C retention and sustained crop productivity. (c) Elsevier B.V. All rights reserved.
  • Authors:
    • Wang, M. Q.
    • Kwon, H.-Y.
    • Mueller, S.
    • Dunn, J. B.
  • Source: Biotechnology for Biofuels
  • Volume: 6
  • Year: 2013
  • Summary: Background: The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and sources of variability. Results: In our study, we estimate LUC GHG emissions for ethanol from four feedstocks: corn, corn stover, switchgrass, and miscanthus. We use new computable general equilibrium (CGE) results for worldwide LUC. U.S. domestic carbon emission factors are from state-level modelling with a surrogate CENTURY model and U. S. Forest Service data. This paper investigates the effect of several key domestic lands carbon content modelling parameters on LUC GHG emissions. International carbon emission factors are from the Woods Hole Research Center. LUC GHG emissions are calculated from these LUCs and carbon content data with Argonne National Laboratory's Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) model. Our results indicate that miscanthus and corn ethanol have the lowest (-10 g CO(2)e/MJ) and highest (7.6 g CO(2)e/MJ) LUC GHG emissions under base case modelling assumptions. The results for corn ethanol are lower than corresponding results from previous studies. Switchgrass ethanol base case results (2.8 g CO(2)e/MJ) were the most influenced by assumptions regarding converted forestlands and the fate of carbon in harvested wood products. They are greater than miscanthus LUC GHG emissions because switchgrass is a lower-yielding crop. Finally, LUC GHG emissions for corn stover are essentially negligible and insensitive to changes in model assumptions. Conclusions: This research provides new insight into the influence of key carbon content modelling variables on LUC GHG emissions associated with the four bioethanol pathways we examined. Our results indicate that LUC GHG emissions may have a smaller contribution to the overall biofuel life cycle than previously thought. Additionally, they highlight the need for future advances in LUC GHG emissions estimation including improvements to CGE models and aboveground and belowground carbon content data.
  • Authors:
    • Long, S. P.
    • Keogh, C.
    • Davis, S. C.
    • Anderson-Teixeira, K. J.
    • Duval, B. D.
    • Parton, W. J.
    • DeLucia, E. H.
  • Source: PLoS ONE
  • Volume: 8
  • Issue: 8
  • Year: 2013
  • Summary: Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46-76 Mg dry mass.ha(-1)). Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq.m(-2) over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions.
  • Authors:
    • Emmerling, C.
    • Fries, J.
    • Froeba, N.
    • Felten, D.
  • Source: Renewable Energy
  • Volume: 55
  • Year: 2013
  • Summary: Biomass for bioenergy is an important option within global change mitigation policies. The present research focused on energy net production, net reduction of greenhouse gases (GHG) (considered as CO2-equivalents), and energy output:input ratio of the energy cropping systems 'rapeseed', 'maize', and 'Miscanthus'. The system-specific main products were biodiesel (rapeseed), electricity from biogas (maize), and Miscanthus chips (loose, chopped material); the related substituted fossil resources were diesel fuel (rapeseed), electricity from the German energy mix (maize), and heating oil (Miscanthus). However, research did not aim for a direct quantitative comparison of the crops. The study followed a case study approach with averaged data from commercial farms within an enclosed agricultural area (<5 km(2)) in Western Germany. Cultivation techniques were considered as communicated by farmers and operation managers; the diesel fuel consumption of agricultural machinery was modeled using an online-based calculator of the German Association for Technology and Structures in Agriculture (KTBL). Overall, rounded net energy production amounted to 66 GJ ha(-1) (rapeseed), 91 GJ ha(-1) (maize), and 254 GJ ha(-1) yr(-1) (Miscanthus); the related energy output:input ratios were 4.7 (rapeseed), 5.5 (maize), and 47.3 (Miscanthus), respectively. Compared to the respective fossil fuel-related energy supply, CO2-equivalent reduction potential ranged between 30 and 76% for electrical energy from maize biomass, 29 -82% for biodiesel from rapeseed, and 96-117% for Miscanthus chips, depending on whether or not the accruing by-products rapeseed cake, glycerin (rapeseed cropping system), and waste heat (maize) were considered. True 'CO2-neutrality' was only reached by the Miscanthus cropping system and was related to an additional credit from carbon sequestration in soil during the cultivation period; thus, this cropping system could be attributed to be a CO2-sink. The study indicated that bioenergy can be produced sustainably under commercial farming conditions in terms of a significantly reduced consumption of natural resources.
  • Authors:
    • Elanchezhian, R.
    • Chhabra, V.
    • Biswas, S.
    • Haris, A. V. A.
    • Bhatt, B. P.
  • Source: CURRENT SCIENCE
  • Volume: 104
  • Issue: 2
  • Year: 2013
  • Summary: Accumulation of greenhouse gases (GHGs) in the atmosphere has exposed us to the potential warming and its adverse effects on agriculture. The present study deals with the impact of climate change on winter wheat and maize using the Infocrop model. Simulation studies were performed for different time-periods using HADCM3 factors at four centres located in three different agroecological zones, with prevalent management practices. The results showed that under changed climate, wheat yield decreased whereas the yield of winter maize increased due to warmer winters and enhanced CO2 compared to baseline. Duration of both the crops has decreased owing to the higher temperatures during the growing period. The increase in yield of winter maize points to the suitability of the region for its cultivation in future. Further, increase in maize cultivation in locations with poor wheat yield could well be considered as an adaptation option.
  • Authors:
    • Herrmann, A.
  • Source: BioEnergy Research
  • Volume: 6
  • Issue: 1
  • Year: 2013
  • Summary: Several European countries have expanded the traditional use of anaerobic digestion, i.e. waste treatment, to energy generation through attractive incentives. In some countries, it is further promoted by additional payments to generate biogas from biomass. This review aims to summarise agronomic aspects of methane production from maize, to address resulting abiotic environmental effects and to highlight challenges and prospects. The opportunities of biogas production are manifold, including the mitigation of climate change, decreasing reliance on fossil fuels and diversification of farm income. Although the anaerobic digestion of animal manure is regarded as the most beneficial for reducing greenhouse gas (GHG) emission from manure storage, the energy output can be substantially enhanced by co-digesting manure and maize, which is the most efficient crop for substrate provision in many regions. Although first regarded as beneficial, the rush into biogas production strongly based on maize (Zea mays ssp. mays) is being questioned in view of its environmental soundness. Main areas of concern comprise the spatial concentration of biogas plant together with the high amount of digestate and resulting pollution of surface and ground water, emission of climate-relevant gases and detrimental effects of maize cultivation on soil organic matter degradation. Key challenges that have been identified to enhance the sustainability of maize-based biogas production include (1) the design of regionally adapted maize rotations, (2) an improved management of biogas residues (BR), (3) the establishment of a more comprehensive data base for evaluating soil C fluxes in maize production as well as GHG emissions at the biogas plant and during BR storage and (4) the consideration of direct and indirect land use change impact of maize-based biogas production.