• Authors:
    • Giltrap, D.
    • Hernandez-Ramirez, G.
    • Kim, D.-G.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 168
  • Issue: March
  • Year: 2013
  • Summary: Rising atmospheric concentrations of nitrous oxide (N2O) contribute to global warming and associated climate change. It is often assumed that there is a linear relationship between nitrogen (N) input and direct N2O emission in managed ecosystems and, therefore, direct N2O emission for national greenhouse gas inventories use constant emission factors (EF). However, a growing body of studies shows that increases in direct N2O emission are related by a nonlinear relationship to increasing N input. We examined the dependency of direct N2O emission on N input using 26 published datasets where at least four different levels of N input had been applied. In 18 of these datasets the relationship of direct N2O emission to N input was nonlinear (exponential or hyperbolic) while the relationship was linear in four datasets. We also found that direct N2O EF remains constant or increases or decreases nonlinearly with changing N input. Studies show that direct N2O emissions increase abruptly at N input rates above plant uptake capacity. The remaining surplus N could serve as source of additional N2O production, and also indirectly promote N2O production by inhibiting biochemical N2O reduction. Accordingly, we propose a hypothetical relationship to conceptually describe in three steps the response of direct N2O emissions to increasing N input rates: (1) linear (N limited soil condition), (2) exponential, and (3) steady-state (carbon (C) limited soil condition). In this study, due to the limited availability of data, it was not possible to assess these hypothetical explanations fully. We recommend further comprehensive experimental examination and simulation using process-based models be conducted to address the issues reported in this review. (C) 2012 Elsevier B.V. All rights reserved.
  • Authors:
    • Franzluebbers, A. J.
    • Andrews, S. S.
    • Kome, C. E.
  • Source: JOURNAL OF SOIL AND WATER CONSERVATION
  • Volume: 68
  • Issue: 4
  • Year: 2013
  • Summary: Simple, yet reliable models are needed to quantify soil organic carbon (SOC) changes for the wide diversity of agricultural management conditions in the United States. We compared the outputs of two relatively simple models currently available for farmers and government-financed farm support agencies: the Carbon (C) Management Evaluation Tool for Voluntary Reporting of Greenhouse Gases (COMET-VR) and the Soil Conditioning Index (SCI). Simulations were conducted for 18 locations throughout the United States for five soil textural regimes (loamy sand, sandy loam, silt loam, clay loam, and silty clay loam), three tillage management systems (conventional tillage [CT], minimum tillage [MT], and no tillage [NT]), and two crop rotations (wheat [Triticum aestivum L.]-potato [Solanum tuberosum L.] and wheat-four-year alfalfa [Medicago sativa L.] in western states and corn [Zea mays L.]-soybean [Glycine max L.] and corn-soybean-wheat in eastern states). Both models ranked SOC change as NT > MT > CT, whereby SOC change decreased with increasing soil disturbance with tillage However, models were divergent with regards to soil texture; SOC change was greater in coarse-textured than in fine-textured soils with COMET-VR, but SOC change was lower in coarse-textured than in fine-textured soils with SCI. For crop rotations, SOC change was greater or equal in simpler than in more complex rotation with COMET-VR, but smaller in simpler than in more complex rotations with SCI. Overall, SOC sequestration predicted by COMET-VR was positively related to SCI score, especially when accounting for differences in environmental conditions of a location. Our results suggest that both Models have value and limitations and that measures of SOC sequestration are predictable with these tools under a diversity of typical management conditions in the United States.
  • Authors:
    • Huelsbergen, K.-J.
    • Munch, J. C.
    • Kuestermann, B.
  • Source: European Journal of Agronomy
  • Volume: 49
  • Issue: August
  • Year: 2013
  • Summary: Two factorial long-term field experiments were carried out at the experimental site of Scheyern, located in southern Germany, 40 km north of Munich (48 degrees 30'0' N, 11 degrees 26'60' E). Here three soil tillage systems were investigated: CT (conventional tillage with moldboard plough, 25 cm plowing depth), RT1 (reduced tillage with chisel plow, 18 cm working depth), and RT2 (reduced tillage with chisel plow, 8 cm working depth). At the same time, three fertilization systems were analyzed (high (N3), medium (N2) and low (N1) mineral N input) with a crop rotation of winter wheat (Triticum aestivum L) - potatoes (Solanum tuberosum L.) - winter wheat-corn (Zea mays L). The long-term effects of tillage and fertilization on yields, soil properties, nitrogen and energy efficiency, as well as greenhouse gas emissions (GGE) were investigated for the period of 1994-2005. On average conventional tillage (CT) produced yields of 8.03 (N1), 8.82 (N2) and 8.88 (N3) GE (grain equivalents) ha(-1) yr(-1); reduced tillage (RT1) yields of 7.82 (N1), 8.54 (N2) and 9.10 (N3) GE ha(-1) yr(-1) and RT2 yields of 6.9 (Ni), 7.82 (N2) and 8.6 (N3) GE ha(-1) yr(-1). The benefit of reduced soil tillage over CT. is a lower consumption of diesel fuel (reduced by 35%) and fossil energy (by 10%), C sequestration and N accumulation in soil. We recorded the highest soil organic carbon (SOC) in the RT2 treatments with the lowest tillage intensity (52.5 Mg ha(-1)) and the lowest SOC reserves in the CT plowed treatments (41.1 Mg ha(-1)). During the reported period, SOC reserves in the plowed treatments decreased by about 300 kg C ha-1 yr-1, whereas they increased by 150-500 kg C ha(-1) yr(-1) in the chiseled treatments. Similar results were achieved with the soil organic nitrogen (SON) reserves based on the type of tillage. This amounted to around 4000 kg ha-1 (CT), 4500 kg ha (RT1) and more than 5000 kg N ha-1 (RT2). The RT1 treatments were marked by high nutrient and energy efficiency. The disadvantage of reduced tillage lies in higher pesticide consumption and stronger soil compaction. The influence of reduced tillage was more pronounced in RT2 than in RT1 (higher SOC and SON content, higher soil dry bulk density, lower consumption of diesel fuel, higher pesticide input). The significant decreases in yield in the RT2 treatments reduced the nitrogen and energy efficiency and raised yield-related greenhouse gas emissions (GGE) in comparison to the RT1 treatments. In the case of reduced tillage combined with high N doses (RT1/N3, RT2/N2, RT2/N3), high N2O emissions of 10 to 12 kg ha(-1) yr(-1) were measured using closed chambers. It was found that as input of mineral N increased, GGE for tillage treatments, both area and yield related also increased. In RT1/N1, negative net GGE were recorded due to high C sequestration combined with moderate N2O and CO2 emissions (-220 kg CO2 (eq) ha(-1) yr(-1), -28 kg CO2 eq GE-(1)), whereas CT/N3 produced the highest net GGE (3587 kg CO2 (eq) ha(-1) yr(-1), 404 kg CO2 eq GE(-1)). (C) 2013 Elsevier B.V. All rights reserved.
  • Authors:
    • Wander, M. M.
    • Dunn, J. B.
    • Mueller, S.
    • Kwon, H.-Y.
  • Source: Biomass and Bioenergy
  • Volume: 55
  • Issue: August
  • Year: 2013
  • Summary: Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0-30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn-corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus x giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. (C) 2013 Elsevier Ltd. All rights reserved.
  • Authors:
    • Lal, R.
  • Source: Renewable Agriculture and Food Systems
  • Volume: 28
  • Issue: 2
  • Year: 2013
  • Summary: Ecosystem functions and services provided by soils depend on land use and management. The objective of this article is to review and synthesize relevant information on the impacts of no-till (NT) management of croplands on ecosystem functions and services. Sustainable management of soil through NT involves: (i) replacing what is removed, (ii) restoring what has been degraded, and (iii) minimizing on-site and off-site effects. Despite its merits, NT is adopted on merely similar to 9% of the 1.5 billion ha of global arable land area. Soil's ecosystem services depend on the natural capital (soil organic matter and clay contents, soil depth and water retention capacity) and its management. Soil management in various agro-ecosystems to enhance food production has some trade-offs/disservices (i. e., decline in biodiversity, accelerated erosion and non-point source pollution), which must be minimized by further developing agricultural complexity to mimic natural ecosystems. However, adoption of NT accentuates many ecosystem services: carbon sequestration, biodiversity, elemental cycling, and resilience to natural and anthropogenic perturbations, all of which can affect food security. Links exist among diverse ecosystem services, such that managing one can adversely impact others. For example, increasing agronomic production can reduce biodiversity and deplete soil organic carbon (SOC), harvesting crop residues for cellulosic ethanol can reduce SOC, etc. Undervaluing ecosystem services can jeopardize finite soil resources and aggravate disservices. Adoption of recommended management practices can be promoted through payments for ecosystem services by a market-based approach so that risks of disservices and negative costs can be reduced either through direct economic incentives or as performance payments.
  • Authors:
    • Osborne, S. L.
    • Lehman, R. M.
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 170
  • Issue: April
  • Year: 2013
  • Summary: We determined soil surface fluxes of greenhouse gases (carbon dioxide, nitrous oxide, methane) from no-till, dryland corn (Zea mays L.) in eastern South Dakota and tested the effect of rotation on greenhouse gas fluxes from corn. The corn was grown within a randomized, complete block study that included both a 2-year (corn-soybean) rotation and a 4-year (corn-field peas-winter wheat-soybean) rotation with plots containing the corn phase present in every year, 2007-2010. Annual carbon dioxide (CO2) fluxes were between 1500 and 4000 kg CO2-C ha(-1) during the four-year study. Annual nitrous oxide (N2O) fluxes ranged from 0.8 to 1.5 kg N2O-N ha(-1) with peak fluxes during spring thaw and following fertilization. Net methane (CH4) fluxes in 2007 were close to zero, while fluxes for 2008-2010 were between 0.9 and 1.6 kg CH4-C ha(-1). Methane fluxes increased with consistently escalating values of soil moisture over the four-year period demonstrating that soils which previously exhibited neutral or negative CH4 flux may become net CH4 producers in response to multiyear climatic trends. No significant differences in gas fluxes from corn due to treatment (2-year vs. 4-year rotation) were observed. Mean net annual soil surface gas fluxes from corn calculated over four years for both treatments were 2.4 Mg CO2-C ha(-1), 1.2 kg N2O-N ha(-1), and 0.9 kg CH4-C ha(-1). Annual global warming potentials (GWP) as CO2 equivalents were 572 kg ha(-1) and 30 kg ha(-1) for N2O and CH4, respectively. Measurements of soil carbon showed that the 4-yr rotation accrued 596 kg C ha(-1) yr(-1) in the top 30 cm of soil which would be more than sufficient (2.19 Mg CO2 eq ha(-1) yr(-1)) to offset the annual GWP of the nitrous and methane emissions from corn. In contrast, the 2-year rotation lost 120 kg C ha(-1) yr(-1) from the top 30 cm of soil resulting in corn being a net producer of greenhouse gases and associated GWP. Published by Elsevier B.V.
  • Authors:
    • Zhang, X.
    • Zheng, Z.
    • Lu, Z.
    • Lu, C.
    • Sivelli, A.
    • Li, H.
    • Wang, Q.
    • He, J.
    • Li, H.
  • Source: Soil Science
  • Volume: 178
  • Issue: 1
  • Year: 2013
  • Summary: Traditional tillage (TT) in the North China Plain has maintained grain productivity in the past 50 years. Nonetheless, it has also been a major contributor to global greenhouse gas emissions, biodiversity and soil fertility loss, soil degradation, and even desertification. Permanent raised beds (PRB) have been proposed as a viable solution to achieve sustainable farming in this plain. The effects on soil chemical properties of the PRB treatment and two other treatments, namely, no-tillage and TT treatments, were measured between 2005 and 2011 in the annual double cropping regions of the North China Plain. The soil properties significantly (P 1.35) were significantly (P < 0.05) higher than those under no-tillage and TT. In the cropping zone of PRB, the bulk density was significantly reduced by 14.4%, whereas soil organic carbon, total nitrogen, phosphorus, and potassium and available nitrogen, phosphorus, and potassium in the 0- to 10-cm soil layer were significantly increased by 24.8%, 78.8%, 121.9%, 81.8%, 46.2%, 7.0%, 2.9%, respectively, in comparison with those of TT treatments. Winter wheat and summer maize yields in PRB also underwent a slight increase. Permanent raised beds seem to be an improvement on current farming systems in the North China Plain and valuable for the sustainability of farming in this region.
  • Authors:
    • Silva, P.
    • Pino, V.
    • Fuentes, J.-P.
    • Martinez, E.
    • Acevedo, E.
  • Source: Soil and Tillage Research
  • Volume: 126
  • Year: 2013
  • Summary: Soil management practices may change the soil properties. The magnitude of the change varies according to the soil property, the climate, and the type and time of implementation of a particular management system. The aim of this study was to evaluate the effects of no-tillage (NT) on the chemical and biological properties of an Entic Haploxeroll in Central Chile. Soil organic carbon (SOC), microbial biomass and associated indicators q(CO2), q(Mic), q(Min), available N, P and K, pH, electrical conductivity (EC), and crop yield were determined in a field experiment having a wheat (Triticum turgidum L)-maize (Zea mays L.) crop rotation. The change in soil chemical properties was further evaluated using a greenhouse bioassay in which ryegrass (Lolium perenne L) was grown in soil samples extracted at 0-2,2-5, and 5-15 cm depth. After nine years SOC in the NT treatment was 29.7 Mg ha(-1) compared to 24.8 Mg ha(-1) of CT, resulting in 4.98 Mg ha(-1) C gain. The NT therefore resulted in an average annual sequestration of 0.55 Mg C ha(-1) yr(-1) in the upper 15 cm soil. The soil organic C stored under NT was mainly accumulated in the top 2-cm of soil. The biological indicators showed a greater biological soil quality under NT than under CT. Soil organic C was positively associated with available N, P. and K, but negatively with soil pH. The iyegrass bioassay yielded higher biomass in NT than CT. An improvement in the soil chemical quality of the NT soil was considered to be the main reason for this result. The maize yield under NT had the tendency to improve in time as compared to CT. Wheat, however, had lower yield under NT. It was concluded that NT increased C sequestration and SOC improving the chemical and biological properties of this soil. (C) 2012 Elsevier B.V. All rights reserved.
  • Authors:
    • Sawyer, J. E.
    • Castellano, M. J.
    • Mitchell, D. C.
    • Pantoja, J.
  • Source: Soil Science Society of America Journal
  • Volume: 77
  • Issue: 5
  • Year: 2013
  • Summary: Nitrous oxide (N2O) emission from denitrification in agricultural soils often increases with N fertilizer and soil nitrate (NO3) concentrations. Overwintering cover crops in cereal rotations can decrease soil NO3 concentrations and may decrease N2O emissions. However, mineralizable C availability can be a more important control on N2O emission than NO3 concentration in fertilized soils, and cover crop residue provides mineralizable C input. We measured the effect of a winter rye (Secale cereale L.) cover crop on soil N2O emissions from a maize (Zea mays L.) cropping system treated with banded N fertilizer at three rates (0, 135, and 225 kg N ha(-1)) in Iowa. In addition, we conducted laboratory incubations to determine if potential N2O emissions were limited by mineralizable C or NO3 at these N rates. The rye cover crop decreased soil NO3 concentrations at all N rates. Although the cover crop decreased N2O emissions when no N fertilizer was applied, it increased N2O emissions at an N rate near the economic optimum. In laboratory incubations, N2O emissions from soils from fertilizer bands did not increase with added NO3, but did increase with added glucose. These results show that mineralizable C availability can control N2O emissions, indicating that C from cover crop residue increased N2O emissions from fertilizer band soils in the field. Mineralizable C availability should be considered in future evaluations of cover crop effects on N2O emissions, especially as cover crops are evaluated as a strategy to mitigate agricultural greenhouse gas emissions.
  • Authors:
    • Gottschall, N.
    • Drury, C. F.
    • Gregorich, E. G.
    • Topp, E.
    • Sunohara, M. D.
    • Nangia, V.
    • Lapen, D. R.
  • Source: Journal of Environmental Management
  • Volume: 129
  • Year: 2013
  • Summary: Controlled tile drainage can boost crop yields and improve water quality, but it also has the potential to increase GHG emissions. This study compared in-situ chamber-based measures of soil CH4, N2O, and CO2 fluxes for silt loam soil under corn and soybean cropping with conventional tile drainage (UTD) and controlled tile drainage (LID). A semi-empirical model (NEMIS-NOE) was also used to predict soil N2O fluxes from soils using observed soil data. Observed N2O and CH4 fluxes between UTD and CID fields during the farming season were not significantly different at 0.05 level. Soils were primarily a sink for CH4 but in some cases a source (sources were associated exclusively with CTD). The average N2O fluxes measured ranged between 0.003 and 0.028 kg N ha(-1) day(-1). There were some significantly higher (p <= 0.05) CO2 fluxes associated with LID relative to UTD during some years of study. Correlation analyses indicated that the shallower the water table, the greater the CO2 fluxes. Higher corn plant C for CTD tended to offset estimated higher CTD CO2 C losses via soil respiration by similar to 100-300 kg C ha(-1). There were good fits between observed and predicted (NEMIS-NOE) N2O fluxes for corn (R-2 = 0.70) and soybean (R-2 = 0.53). Predicted N2O fluxes were higher for CID for approximately 70% of the paired-field study periods suggesting that soil physical factors, such as water-filled pore space, imposed by CTD have potentially strong impacts on net N fluxes. Model predictions of daily cumulative N2O fluxes for the agronomically-active study period for corn-CTD and corn-UTD, as a percentage of total N fertilizer applied, were 3.1% and 2.6%, respectively. For predicted N2O fluxes on basis of yield units, indices were 0.0005 and 0.0004 (kg N kg(-1) crop grain yield) for CTD and UTD corn fields, respectively, and 0.0011 and 0.0005 for CTD and UTD soybean fields, respectively.