- Authors:
- Ruzibaev, E.
- Akramkhanov, A.
- Lamers, J. P. A.
- McDonald, A.
- Mirzabaev, A.
- Ibragimov, N.
- Kienzler, K. M.
- Egamberdiev, O.
- Source: Field Crops Research
- Volume: 132
- Year: 2012
- Summary: Rainfed and irrigated agricultural systems have supported livelihoods in the five Central Asian countries (CAC) for millennia, but concerns for sustainability and efficient use of land and water resources are long-standing. During the last 50 years, resource conserving technologies were introduced in large parts of the rainfed areas while the irrigated areas were expanded largely without considering resource conservation. In more recent years, the use of conservation agriculture (CA) practices has been reported for the different agricultural production (AP) zones in CAC, albeit centering on a single AP zone or on single factors such as crop yield, implements or selected soil properties. Moreover, conflicting information exists regarding whether the current practices that are referred to as 'CA' can indeed be defined as such. Overall information on an application of CA-based crop management in Central Asia is incomplete. This discussion paper evaluates experimental evidence on the performance of CA and other resource conserving technologies in the three main AP zones of CAC, provides an overview of farmer adoption of production practices related to CA, and outlines technical and non-technical challenges and opportunities for the future dissemination of CA practices in each zone. Agronomic (e.g. implements, crop yields, duration. and crop residues), institutional (e.g. land tenure) and economic (e.g. short vs. long-term profitability) perspectives are considered. At present, adoption of CA-based agronomic practices in the rainfed production zone is limited to partial crop residue retention on the soil surface or sporadically zero tillage for one crop out of the rotation, and hence the use of single CA components but not the full set of CA practices. In the irrigated AP zones, CA is not commonly practiced and many of the pre-conditions that typically encourage the rapid spread of CA practices appear to be absent or limiting. Further, our analysis suggests that given the diversity of institutional, socio-economic and agro-ecological contexts, a geographically differentiated approach to CA dissemination is required in the CAC. Immediate priorities should include a shift in research paradigms (e.g. towards more participatory approaches with farmers), development of commercially available reduced and no-till seeders suitable for smaller-scale farm enterprises, and advocacy so that decision makers understand how different policies may encourage or discourage innovations that lead towards more sustainable agricultural intensification in the CAC.
- Authors:
- Ahuja, L. R.
- Saseendran, S. A.
- Green, T. R.
- Ma, L. W.
- Nielsen, D. C.
- Walthall, C. L.
- Ko, J. H.
- Source: Climatic Change
- Volume: 111
- Issue: 2
- Year: 2012
- Summary: Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO 2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15-17 years collected during the long-term WF and WCF (1992-2008), and WCM (1994-2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant ( p>0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly ( p<0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO 2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO 2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912-2008) at the location. On average the CO 2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.
- Authors:
- da Silva, P. B.
- Wendling, B.
- Cardoso, M. M.
- Kondo, M. K.
- Brant Albuquerque, C. J.
- Source: Bioscience Journal
- Volume: 28
- Issue: 1
- Year: 2012
- Summary: The objective of this work was evaluated the physical attributes of soil and the main agronomic characteristics of sorghum for grain in no-tillage under different vegetation cover. The experiment was conducted during two growing seasons. In the first years were sown seven grass species in intercropping with sorghum for pasture establishment and the sorghum single defining the eight treatments. In the second season, when direct sowing of sorghum, forages available in the trial were previously desiccated for no-till sorghum. The areas representing the tillage had been barred again. In relation to soil physical properties, experiments were conducted under a randomized block design in factorial 8 (treatments) x 3 (depths) with four replications. Data related to the agronomic characteristics of the sorghum experiment was conducted in a randomized block design with four replications. It concluded with the work that the various forages used in the formation of vegetation for no-tillage affects both soil physical properties such as grain yield of sorghum.
- Authors:
- Kornecki, T. S.
- Price, A. J.
- Arriaga, F. J.
- Source: HortScience
- Volume: 47
- Issue: 2
- Year: 2012
- Summary: A field experiment was conducted in Cullman, AL, to evaluate the effects of three different rollers/crimpers on the termination of a rye ( Secale cereale L) winter cover crop, soil moisture, and yield of sweet corn ( Zea mays saccharata L.) in a no-till system. The following roller types were tested: a straight bar roller, a smooth roller with crimper, and a two-stage roller. These rollers were tested at operating speeds of 3.2 km.h -1 and 6.4 km.h -1. The three rollers/crimpers were compared with a smooth drum roller (no crimping bars) plus glyphosate applied at rate 1.0 kg.ha -1 used as a control. Rye termination dates were selected to be 3 weeks before the recommended sweet corn planting date, which is in the beginning of May for this region. Data indicate that at 3 weeks after rolling for all seasons (2006-2008), 100% rye termination was reached with the smooth drum roller and glyphosate. Two weeks after rolling, average rye termination rates by rollers/crimpers alone were 54.6%, 30.0%, and 50.4% in 2006, 2007, and 2008, respectively. Three weeks after rolling, rye termination rates increased only by ~10% compared with 2 weeks after rolling. These termination levels were below the recommended rate of 90% termination necessary for planting a cash crop into the cover residue. Lower rye termination was probably caused by rolling the rye in an early growth stage (flowering stage). The rollers' operating speed did not influence rye termination rates. Similarly, roller type did not affect soil moisture during the first and second week after rolling. Applying glyphosate with rolling did not increase yield of sweet corn in any of the three growing seasons, and in 2006, sweet corn yield was lower compared with the roller alone treatments. These results are important to vegetable organic systems, in which use of herbicides is not allowed. No significant difference in sweet corn yield was found between operating speeds of 3.2 km.h -1 vs. 6.4 km.h -1 and between the assigned treatments in all growing seasons. However, significant differences in sweet corn yield were detected between the years, most likely as a result of different weather patterns. The lowest sweet corn yield of 3513 kg.ha -1 was reported in 2007 as a result of severe drought in spring and summer of 2007. The highest yield of 15,613 kg.ha -1 was recorded in 2006. In 2008, the yield was 10,158 kg.ha -1. Although the different roller designs were not as effective in ending the rye cover crop compared with the glyphosate treatment, sweet corn yields were unaffected. Multiple rolling operations over the same area could be useful if greater rye termination levels are required without the use of a herbicide, but this recommendation should be tested experimentally in more detail.
- Authors:
- Rogovska, N.
- Petrenko, L.
- Zhang, X.
- Song, C.
- Kravchenko, Y.
- Chen, Y.
- Source: Canadian Journal of Soil Science
- Volume: 92
- Issue: 3
- Year: 2012
- Summary: Tillage has been reported to induce changes in soil organic matter (SOM) concentrations and quality. Conversion of plow-tillage to minimum till and no-till (NT) farming enhances the SOM pool. Enrichment of the SOM pool is essential for maintaining fertility of Chernozems, advancing food security, and improving the environment. The main objective of this study was to examine the effect of different tillage systems on the SOM concentration, its quality and dynamics including CO 2 assimilation by heterotrophic bacteria and humus characteristics - the carbon (C) concentration in humic substances and the labile soil organic C fraction (SOCL) extracted with 0.1 N NaOH - as well as the molecular masses, spectroscopic parameters and physiological effects of humic acids on germinating pea ( Pisum sativum L.) seeds. Our study was conducted on a long-term experimental site on a Haplick Chernozem in the Poltava region of Ukraine over a 10-yr period from 1996 to 2006. Results indicate that conversion from conventional to reduced soil tillage systems increased SOM concentrations in 0- to 10-cm soil layer and led to the accumulation of C in fulvic acids and humins. No significant differences in SOM storage in the 0- to 100-cm layer were observed among tillage systems. However, reduced tillage systems had a higher proportion of SOCL, a lower ratio of C in humic acids/C in fulvic acids and more humic acids with molecular masses from 110 to 2000 kDa. Our study demonstrated that the quality and dynamics of SOM are closely related to soil tillage practices.
- Authors:
- Lemke, R. L.
- Vandenbygaart, A. J.
- Campbell, C. A.
- Lafond, G. P.
- McConkey, B. G.
- Grant, B.
- Source: Canadian Journal of Soil Science
- Volume: 92
- Issue: 3
- Year: 2012
- Summary: Carbon sequestration in soil is important due to its influence on soil fertility and its impact on the greenhouse gas (GHG) phenomenon. Carbon sequestration is influenced by agronomic factors, but to what extent is still being studied. Long-term agronomic studies provide one of the best means of making such assessments. In this paper we discuss and quantify the effect of cropping frequency, fertilization, legume green manure (LGM) and hay crops in rotations, and tillage on soil organic carbon (SOC) changes in a thin Black Chernozemic fine-textured soil in southeastern Saskatchewan. This was based on a 50-yr (1958-2007) crop rotation experiment which was initiated on land that had previously been in fallow-wheat ( Triticum aestivum L.) (F-W), or F-W-W receiving minimum fertilizer for the previous 50 yr. We sampled soil in 1987, 1996 (6 yr after changing from conventional tillage to no-tillage management and increasing N rates markedly) and again in 2007. The SOC (0-15 cm depth) in unfertilized F-W and F-W-W appears not to have changed from the assumed starting level, even after 20 yr of no-till, but SOC in unfertilized continuous wheat (Cont W) increased slightly [not significant ( P>0.05)] in 30 yr, but increased more after 20 yr of no-till (but still not significant). No-till plus proper fertilization for 20 yr increased the SOC of F-W, F-W-W and Cont W in direct proportion to cropping frequency. The SOC in the LGM-W-W (unfertilized) system was higher than unfertilized F-W-W in 1987, but 20 yr of no-tillage had no effect, likely because grain yields and C inputs were depressed by inadequate available P. Soil organic carbon in the two aggrading systems [Cont W (N+P) and F-W-W-hay(H)-H-H (unfertilized)] increased significantly ( P<0.05) in the first 30 yr; however, a further 20 yr of no-tillage (and increased N in the case of the Cont W) did not increase SOC suggesting that the SOC had reached a steady-state for this soil and management system. The Campbell model effectively simulated SOC changes except for Cont W(N+P), which it overestimated because the model is ineffective in simulating SOC in very fertile systems. After 50 yr, efficiency of conversion of residue C inputs to SOC was negligible for unfertilized F-W and F-W-W, was 3 to 4% for fertilized fallow-containing systems, was about 6 or 7% for Cont W, and about 11% for the unfertilized F-W-W-H-H-H systems.
- Authors:
- Lollato, R. P.
- Lollato, M. A.
- Edwards, J. T.
- Source: Journal of Soil and Water Conservation
- Volume: 67
- Issue: 3
- Year: 2012
- Authors:
- Luna, J. M.
- Mitchell, J. P.
- Shrestha, A.
- Source: Renewable Agriculture and Food Systems
- Volume: 27
- Issue: 1
- Year: 2012
- Summary: Organic farming has been historically dependent on conventional tillage operations to convert perennial pasture leys to annual crop rotations, incorporate crop residues, compost and cover crops, as well as to mechanically kill existing vegetation. Conventional tillage, however, has long been known to lead to soil degradation and erosion. A recently developed no-till organic production system that uses a roller-crimper technology to mechanically kill cover crops was evaluated in two states in the western United States. In Washington, pumpkins ( Cucurbita spp.) grown in a no-till roller-crimper (NT-RC) system produced yields 80% of conventional tillage, but with fewer weeds. However, in California on-farm research trials in organic cotton ( Gossypium barbadense L.), tomato ( Lycopersicon esculentum Mill.), eggplant ( Solanum melongena L.) and cowpea ( Vigna unguiculata (L.) Walp.), the no-till system produced virtual crop failure, or yields less than 20% of the standard production method. The major problems associated with rolled cover crops in California included reduced crop seedling emergence, planter impediment with excessive residue, lack of moisture and delay in transplanting of vegetable crops due to continued growth of cover crops, in-season crop competition from cover crop regrowth and impracticability of using cultivators. Further, excessive dry residue during summer in California can present the risk of fire. In both California and Oregon, considerable success has been demonstrated with zone tillage (strip tillage) in conventionally produced field and vegetable crops. In a replicated Oregon trial, the organic strip tillage treatment produced 85% of the broccoli ( Brassica oleracea L.) yield compared to a conventional tillage treatment. Our studies suggest that the zone tillage concept may offer opportunities to overcome many of the agronomic challenges facing no-till.
- Authors:
- Mailapalli, D. R.
- Horwath, W. R.
- Wallender, W. W.
- Burger, M.
- Source: Journal of Irrigation and Drainage Engineering
- Volume: 138
- Issue: 1
- Year: 2012
- Summary: Development of best management practices (BMPs) such as conservation tillage and winter cover crop to mitigate runoff and reduce dissolved chemicals in irrigation runoff is an important objective for controlling surface water pollution attributable to agricultural activities. In this study, the effect of standard tillage (ST), ST with winter cover cropping (STCC), and no-till (NT) management practices on infiltration, runoff, and dissolved organic carbon (DOC) export from furrow-irrigated fields of 244-m length was investigated for summer 2007 and 2008 irrigations. The practices were implemented for 2 years. The average surface residue cover was 11, 44, and 32% for ST, STCC, and NT, respectively, for 2007 and 11, 59, and 61%, respectively, in the following year of the study. Two irrigations in each year were considered for the analysis. The runoff samples were collected from each tillage treatment using ISCO autosamplers at regular time intervals. The infiltration and runoff were estimated using a volume balance model (VBM) by considering a 0.2-m irrigation requirement. Converting from ST to STCC increased the infiltration by 14 and 43% and reduced the runoff by 48 and 43% in 2007 and 2008 irrigations, respectively; whereas, converting ST to NT enhanced the infiltration by 4% in both years and decreased the runoff by 19 and 23% in 2007 and 2008 irrigations, respectively. The authors observed only slightly higher DOC concentrations in STCC, but there was a 24% increase for NT in 2007 irrigations, and both compared to with ST ranged from 3.98 to 5.46 mg/L. The DOC concentration was not significantly different among the treatments in 2008 irrigations (3.48 to 4.6 mg/L). Combining the runoff and DOC concentration effects, the DOC export for STCC was decreased by 55% in both years; whereas, it was decreased by 4 and 27% for NT in 2007 and 2008 irrigations, respectively, compared with ST. Although STCC and NT have higher concentrations, the reduction in export in these treatments is attributable to lower runoff. These results suggest that DOC export can be controlled with STCC practice. No-till showed the same trend, although these results must be confirmed after extended implementation of this practice.
- Authors:
- Martins, M. dos R.
- Angers, D. A.
- Cora, J. E.
- Source: Soil Science Society of America Journal
- Volume: 76
- Issue: 2
- Year: 2012
- Summary: In no-till systems, plants play a substantial role in soil physical conditioning because physical management is otherwise confined to sowing operations. We performed a study to determine the effect of 28 different crop sequences on soil water-stable aggregation, soil organic C (SOC), and the neutral carbohydrate composition of the surface layer (0-5-cm depth) of an Oxisol under no-till. Summer crop sequences with corn ( Zea mays L.) on a continuous basis or in rotation with soybean [ Glycine max (L.) Merr.] showed a higher mean weight diameter (MWD) of water-stable aggregates than those with a rice ( Oryza sativa L.)-bean ( Phaseolus vulgaris L.)-cotton ( Gossypium hirsutum L.) rotation. Among winter crops, pearl millet [ Pennisetum americanum (L.) Leeke] or grain sorghum [ Sorghum bicolor (L.) Moench] were associated with a higher MWD than oilseed radish ( Raphanus sativus L. var. oleiformis Pers.). Plant tissues of Poaceae species (corn, pearl millet, and sorghum) were enriched in pentoses relative to other plant species. A principal component analysis showed a close positive relationship of the soil aggregate MWD with the soil xylose content, but not with other soil monosaccharide and SOC contents, and a positive relationship with the amount of pentose input to the soil, notably from aboveground plant materials. A possible explanation is that pentosans are used as an energy source by filamentous microorganisms, which play a well-known role in stabilizing soil aggregates. Our results suggest that plant-derived carbohydrates mediate crop species effects on soil structure under no-till conditions, and this effect appears to be independent of changes in total SOC.