• Authors:
    • Tomar, S. S.
    • Yadav, A. K.
    • Singh, A.
    • Pal, G.
    • Shahi, U. P.
    • Kumar, A.
    • Singh, B.
    • Gupta, R. K.
    • Naresh, R. K.
  • Source: Progressive Agriculture
  • Volume: 10
  • Issue: 2
  • Year: 2010
  • Summary: Resource conserving technologies (RCTs) with double no-till practices represents a major shift in production techniques for attaining optimal productivity, profitability and water use in rice-wheat system in Indo-Gangetic plains. Conventional tillage and crop establishment methods such as puddled transplanting in the ricewheat ( Oryza sativa L.- Triticum aestivum L.) system in the Indo-Gangetic Plains (IGP) require a large amount of water and labor, both of which are increasingly becoming scarce and expensive. We attempted to evaluate alternatives that would require smaller amounts of these two inputs. A field experiment was conducted in the Western IGP for 2 years to evaluate various tillage and crop establishment systems for their efficiency in labor, water, and energy use and economic profitability. The soil physical properties (bulk density, mean weight diameter of aggregates and infiltration rate) improved significantly compared to puddled transplanted rice-conventional till wheat system. The wide beds and double no-till with flat layouts in rice-wheat system is under evaluation in different scenario of soil, climate, crop cultivars and seeding/crop establishment techniques (direct seeding, transplanting) and showed non consistent results. Systematic information on various aspects of narrow/wide beds is lacking. The productivity of rice with wide beds was at par compared to reduced tillage transplanted rice layouts but, the wheat productivity was reverse as it was highest under wide beds. The RW system productivity was highest with wide raised beds does differ significantly with other tillage and crop establishment techniques except with mulch crop establishment techniques. The water productivity of both rice and wheat was markedly improved with wide beds compared to other tillage and crop establishment techniques. Under research managed trials (rice on double no-till flat) with basmati rice, the profitability was maximum with ZTDSR (US $ 505 ha -1) and was least with direct seeded on narrow raised beds (US$305 ha -1). The study showed that the conventional practice of puddled transplanting could be replaced with no-tillage-based crop establishment methods to save water and labor. However, the occurrence and distribution of rainfall during the cropping season had considerable influence on the savings in irrigation water.
  • Authors:
    • Encide-Olibone,A. P.
    • Olibone,D.
    • Rosolem,C. A.
  • Source: Soil Use and Management
  • Volume: 26
  • Issue: 4
  • Year: 2010
  • Summary: Crop rotation and the maintenance of plant residues over the soil can increase soil water storage capacity. Root access to water and nutrients depends on soil physical characteristics that may be expressed in the Least Limiting Water Range (LLWR) concept. In this work, the effects of crop rotation and chiselling on the soil LLWR to a depth of 0.1 m and crop yields under no-till were studied on a tropical Alfisol in Sao Paulo state, Brazil, for 3 yr. Soybean and corn were grown in the summer in rotation with pearl millet (Pennisetum glaucum, Linneu, cv. ADR 300), grain sorghum (Sorghum bicolor, L., Moench), congo grass (Brachiaria ruziziensis, Germain et Evrard) and castor bean (Ricinus comunis, Linneu) during fall/winter and spring, under no-till or chiselling. The LLWR was determined right after the desiccation of the cover crops and before soybean planting. Soil physico-hydraulic conditions were improved in the uppermost soil layers by crop rotations under zero tillage, without initial chiselling, from the second year and on, resulting in soil quality similar to that obtained with chiselling. In seasons without severe water shortage, crop yields were not limited by soil compaction, however, in a drier season, the rotation with congo grass alone or intercropped with castor resulted in the greatest cover crop dry matter yield. Soybean yields did not respond to modifications in the LLWR.
  • Authors:
    • Ouedraogo, E.
    • Mando, A.
  • Source: Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World
  • Year: 2010
  • Summary: A field experiment was conducted in Gampela (Burkina Faso) in 2000 and 2001 to assess the impact of organic and mineral sources of nutrients and combinations thereof in optimizing crop production under till and no-till and to assess the economic benefit of that option. At a dose equivalent to 40 kg N/ha, crop yield was better secured with organic-N than with urea-N. Combining organic and mineral sources of nutrients do not have only additive effects but real interaction, which significantly affect crop yield and water use efficiency. The use of soil and water management measures is a key to increase the economic benefit of mineral, organic or combined organic and mineral sources of nutrient application under semi-arid conditions.
  • Authors:
    • Schroeder, K. L.
    • Paulitz, T. C.
    • Schillinger, W. F.
  • Source: Plant Disease
  • Volume: 94
  • Issue: 1
  • Year: 2010
  • Summary: An irrigated cropping systems experiment was conducted for 6 years in east-central Washington State to examine agronomic and economic alternatives to continuous annual winter wheat ( Triticum aestivum) with burning and plowing, and to determine how root diseases of cereals are influenced by management practices. The continuous winter wheat treatment with burning and plowing was compared with a 3-year no-till rotation of winter wheat-spring barley ( Hordeum vulgare)-winter canola ( Brassica napus) and three straw management treatments: burning, straw removal, and leaving the straw stubble standing after harvest. Take-all disease and inoculum increased from years 1 to 4 in the continuous winter wheat treatment with burning and plowing, reducing plant growth compared to the no-till treatments with crop rotations. Inoculum of Rhizoctonia solani AG-8 was significantly lower in the tilled treatment compared to the no-till treatments. Inoculum concentration of Fusarium pseudograminearum was higher than that of F. culmorum, and in one of three years, the former was higher in treatments with standing stubble and mechanical straw removal compared to burned treatments. Residue management method had no effect on Rhizoctonia inoculum, but spring barley had more crown roots and tillers and greater height with stubble burning. This 6-year study showed that irrigated winter wheat can be produced in a no-till rotation without major disease losses and demonstrated how cropping practices influence the dynamics of soilborne cereal diseases and inoculum over time.
  • Authors:
    • Dao, T. H.
    • Rosolem, C. A.
    • Pavinato, P. S.
  • Source: Geoderma
  • Volume: 156
  • Issue: 3-4
  • Year: 2010
  • Summary: Phosphorus (P) is an essential element in crop nutrition, which can be growth limiting or an environmental contaminant, if present in excess. Tillage practices have a direct effect on the behavior and availability of soil P. Sorption and availability of various P forms were evaluated in an incubation-fractionation study of three soils, a Typic Paleudults (CR soil) and two Cerrado Oxisols (Latossolo Vermelho-Amarelo [LVA] and Latossolo Vermelho [LV]) with distinct biogeochemical characteristics and tillage management history. Phosphate and myo-inositol hexa kisphosphate ( mIPH) were strongly sorbed by the soils. Maximum adsorption capacities ( Smax) were 2.2-6.9, 3.3-7.8, and 1.6-19.8 mmol kg -1 for phosphate in the 0-40 cm depths of the CR, LV, and LVA soils, respectively. For mIPH, Smax were 1.2-3.7, 3.7-5.5, and 4.6-5.2 mmol kg -1. Saturation indices reflected the long-term effect of repeated manure applications on the Paleudults and the near saturation of its P holding capacity, in contrast to the recently cultivated Cerrado soils. Tillage method appeared to have altered P retention characteristics of the near-surface zone very slightly, while increases in ligand-exchangeable (EEP i) and enzyme-labile organic P (EDTA-PHP) forms were observed in no-till Oxisols. In the Paleudults, added manure P increased bioactive P fractions and P saturation of no-till near-surface soil zone. Estimates of all bioactive P fractions using the ligand-based enzymatic assay showed it to be an effective method for assessing P availability in soil and developing sustainable P management strategies, particularly in Cerrado Oxisols that were low in organic matter while having an extensive P-fixing capacity.
  • Authors:
    • Poffenbarger, H.
  • Source: Natural Sciences Education
  • Volume: 39
  • Year: 2010
  • Summary: Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops generally led to increased bulk density, especially in no-till systems. On the other hand, the negative effects of grazing on penetration resistance and aggregate stability were more prominent under conventional tillage than no-till. The deleterious effects of grazing on soil physical properties were most severe when grazing was implemented at high intensity and on wet soils. Microbial biomass C was higher under grazed conditions than ungrazed conditions. Nitrogen was found to be higher when cover crops were grazed than not grazed; however, this was only true for conventional tillage systems. Generally, grazing cover crops did not negatively affect primary crop yields. Cover crops provided nutritious forage for cattle and reduced feed costs by offsetting the use of hay or other pasture.
  • Authors:
    • He, X.
    • Qin, S.
    • Hu, C.
    • Zhang, Y.
    • Dong, W.
  • Source: European Journal of Soil Biology
  • Volume: 46
  • Issue: 3-4
  • Year: 2010
  • Summary: This study compared the responses of soil chemical and microbial indicators to the conservational tillage (CT) versus traditional tillage (TT) in a Haplic Cambisol in the North China Plain (NCP). These indicators included soil organic C (SOC), soil total N (STN), soil available P (SAP), cation exchange capacity (CEC), exchangeable Ca 2+ and Mg 2+, microbial biomass C (MBC), microbial biomass N (MBN), alkaline phosphomonoesterase (AP), beta-glucosidase, N-acetyl-beta-glucosaminidase (NAG), nitrate reductase (NR), protease, urease and the geometric mean of the assayed enzymes (GMea). Our results showed that almost all investigated parameters, except the contents of CEC, Ca 2+, Mg 2+ and the ratios of GMea/MBN and C/N, were significantly higher under the CT (no-till, NT and reduced-till, RT) than those under the TT, whilst the crop yield was not significantly affected by tillage treatments. Principle component analysis (PCA) showed that the first and second component explained 67.2% and 16.6% of the total variation, respectively. The first component was significantly correlated with GMea, MBC, MBN and beta-glucosidase, and effectively discriminated soils under the NT or RT from those under the TT. Our results indicated that the 6-year CT improved the quality of the Haplic Cambisol by enhancing its chemical and microbial properties, whilst GMea, MBC, MBN and beta-glucosidase were among the most effective indicators for monitoring these improvements.
  • Authors:
    • Topa, D.
    • Cara, M.
    • Jitareanu, G.
    • Raus, L.
  • Source: Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series
  • Volume: 40
  • Issue: 1
  • Year: 2010
  • Summary: The project aims the sustainable development in Romania, soil, water and carbon conservation, and counter-balances the effects of global climate change. Research carried out aimed at developing fundamental knowledge through in-depth inquiries of soil quality indicators of Moldavian Plain, regarding integrated management of soil and water. Research carried out also aimed to quantify the influence of agricultural technologies on physic, hydric, thermic, nutrient and biological soil regime, and ecological impact of these changes on ecological, energetically, hydrological, biogeochemical and breathing soil function, in specific areas of Moldavian Plain. The experiment was conducted at the Didactic Station of the "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Ezareni Farm, during Analele Universitatii din Craiova, seria Agricultura - Montanologie - Cadastru Vol. XL/1 2010 farming years 2007-2009. The experimental site is located in the East part of Romania on a chambic chernozem, with a clay-loamy texture, 6.8 pH units, 3.7% humus content and a medium level of fertilization. The soil has high clay content (38-43%) and is difficult to till when soil moisture is close to the wilting point (12.2%). We have investigated three variants of soil tillage system - conventional tillage, minimum tillage and no-till - in the crop rotation made of wheat and raps. This paper presents the results obtained in winter wheat growing as concerns the influence of the tillage method on some soil physical characteristics. Tillage system modify, at least temporarily, some of the physical properties of soil, such as soil bulk density, penetration resistance, soil porosity and soil structural stability. All the tillage operation was significantly different in heir effects on soil properties. The results indicate that soil tillage systems must be adjusted to plant requirements for crop rotation and to the pedoclimatic conditions of the area.
  • Authors:
    • Leroux, X.
    • Attard, E.
    • Lemaire, G.
    • Laurent, F.
    • Chabbi, A.
    • Nicolardot, B.
    • Poly, F.
    • Recous, S.
  • Source: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia
  • Year: 2010
  • Summary: The COSMOS-Flux project aimed at studying two situations that have important environmental impacts at a larger scale : the conversion tillage no tillage where different tillage systems have been applied for 14 years at the start of experiment; the conversion grassland annual crop where the introduction of temporary grassland into rotations is studied. The characterization of upper layers of soil for C and N pools, mineralization, immobilization and nitrification of N, along with characteristics of the nitrifying and denitrifying bacterial communities (activity, size and structure) were followed during 18 to 36 months after conversion. We observed that the tillage of soils untilled for 14 years, or the ploughing of the 5-year old grassland were major disturbances for the soils, which led to a very fast evolution of soil organic matter pools, N fluxes and microbial activities towards the characteristics observed for tilled and arable situations. Conversely, the shifts from till to no-till, and the establishment of grassland on soil previously cropped with annual species did not change significantly their soil characteristics at the time scale of the study. Among soil environmental variables, soil organic carbon appeared as a key driver of the observed responses.
  • Authors:
    • Huon, S.
    • Soulileuth, B.
    • Jouquet, P.
    • Pierret, A.
    • Ribolzi, O.
    • Valentin, C.
    • Bourdon, E.
    • Chantharath, B.
    • Rouw, A. de
  • Source: Agriculture, Ecosystems & Environment
  • Volume: 136
  • Issue: 1-2
  • Year: 2010
  • Summary: There is limited information, particularly in the tropics, of farming systems that loose or accumulate carbon in their soils. We compared no-till with a mulch-providing cover crop with conventional tillage without cover crop. Side effects were also investigated, weeds, surface crusting, soil macrofauna, infiltration, porosity and roots. The study site was a flat sandy clay loam. Treatments were maintained over five years; within this period, the time between the first and last soil sampling was exactly four years. Both times the same profile locations and exactly the same depths were sampled thereby greatly reducing inherent soil variability. Soil was sampled at five increments from 0 to 40 cm depth. The biomass contributions of maize, cover crop and weeds were measured. The main findings were: (1) The cover crop that was alleged to supply extra inputs to the no-till system failed to do so because the weeds in the tillage treatment became as efficient in accumulating biomass as the planted cover crop. (2) With equal organic inputs over four years (43.0 Mg dry weight ha -1 incorporated into the soil under conventional tillage, and 44.2 Mg dry weight ha -1 remaining on the soil surface as mulch under no-till), the tillage system stored (0-40 cm) significantly soil carbon (+590 g C m -2), whereas the no-till lost carbon (-133 g C m -2). The difference between the systems was significant. Carbon accumulated just below the plough layer. Nitrogen stocks remained unchanged. A very significant lowering of the C:N ratio occurred under no-till. The process of transforming the available biomass on the soil surface into organic matter is apparently too slow to avoid direct losses under no-till. Alternatively, ploughing plant residues into the soil enables to capture some of what would otherwise be lost as CO 2 through decay, thereby increasing soil carbon. (3) In the last three years of the experiment, maize grain yields and crop residues stabilized at a lower level but were significantly higher under no-till, 16% and 34%, respectively. Higher yields were attributed to more soil water under no-till due to improved soil structure, though bulk density was not affected. The mulch layer protecting the soil surface favoured infiltration by keeping it crust-free. Water availability was further promoted by a better connectivity of pores and more macrofauna. However, the no-till system depended heavily on fertilizers and herbicides. The lack of effectiveness of herbicides against shifting weed communities threatens the continuation of the system.