• Authors:
    • Tilman,David
    • Hill,Jason
    • Lehman,Clarence
  • Source: Science
  • Volume: 314
  • Issue: 5805
  • Year: 2006
  • Summary: Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare-1 year-1 of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare-1 year-1). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.
  • Authors:
    • Varvel, G. E.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 2
  • Year: 2006
  • Summary: Sequestration and storage of carbon (C) by agricultural soils has been cited as one potential part of the solution to soil degradation and global climate change. However, C sequestration in soils is a slow and dynamic process. The objective of this study was to evaluate the effects of crop rotation and N fertilizer management on soil organic C (SOC) levels at several points in time during 18 yr of a long-term study in the Western Corn Belt. Seven cropping systems (three monoculture, two 2-yr, and two 4-yr rotations) with three levels of N fertilizer were compared. Soil samples were taken in the spring in 1984, 1992, 1998, and 2002 to a depth of 30 cm in 0- to 7.5-, 7.5- to 15-, and 15- to 30-cm increments. No differences were obtained in SOC levels in 1984 at the beginning of the study. After 8 yr, rotation significantly increased SOC 449 kg ha-1 across all cropping systems. From 1992 to 2002, SOC levels in the 0- to 7.5-cm depth decreased by 516 kg ha-1 across all cropping systems. Soil organic C levels in the 7.5- to 15-cm depths in 1992 and 2002 demonstrated similar rotation effects to those in the surface 0- to 7.5-cm, being not significantly affected from 1984 to 1992 but being significantly decreased from 1992 to 2002 (568 kg SOC ha-1 across all cropping systems). Many of the SOC gains in the surface 30 cm measured during the first 8 yr of the study were lost during the next 10 yr in all but the 4-yr cropping systems after 18 yr. The loss of SOC in this latter period occurred when depth of tillage was increased by using a tandem disk with larger-diameter disks. These results demonstrate that more than one point-in-time measurement from long-term experiments is necessary to monitor SOC changes when several management variables, such as cropping system and N fertilizer, are being used. They also indicate that apparent small changes in cultural practices, such as in depth of tillage in this experiment, can significantly change SOC dynamics in the soil. Subtle changes in cultural practices (e.g., tillage depth) can have significant long-term results, but long-term experiments are required to quantify their impact under variable climatic conditions.
  • Authors:
    • Spokas, K. A.
    • Dolan, M. S.
    • Baker, J. M.
    • Venterea, R. T.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 5
  • Year: 2006
  • Summary: Few studies have examined the impacts of rotational tillage regimes on soil carbon (C) and nitrogen (N). We measured the C and N content of soils managed under corn (Zea mays L.)-soybean (Glycine max L.) rotation following 10 and 15 yr of treatments. A conventional tillage (CT) regime employing moldboard and chisel plowing in alternate years was compared with both continuous no-till (NT) and biennial tillage (BT), which employed chisel plowing before soybean only. While masses of C and N in the upper 0.3 m under both BT and NT were higher than CT, only the BT treatment differed from CT when the entire sampled depth (0.6 m) was considered. Decreased C inputs, as indicated by reduced grain yields, may have limited C storage in the NT system. Thus, while more C was apparently retained under NT per unit of C input, some tillage appears necessary in this climate and cropping system to maximize C storage. Soil carbon dioxide (CO2) fluxes under NT were greater than CT during a drier than normal year, suggesting that C storage may also be partly constrained under NT due to wetter conditions that promote increased soil respiration. Increased temperature sensitivity of soil respiration with increasing soil moisture was also observed. These findings indicate that long-term biennial chisel plowing for corn-soybean in the upper mid-west USA can enhance C storage, reduce tillage-related fuel costs, and maintain yields compared with more intensive annual tillage.
  • Authors:
    • Hegymegi, P.
    • Gal, A.
    • Smith, D. R.
    • Omonode, R.A.
    • Vyn, T. J.
  • Source: 17th Triennial Conference of the International Soil Tillage Research Organisation (ISTRO)Conference Proceedings
  • Year: 2006
  • Summary: Few researchers have assessed the possibly interacting effects of long-term tillage and rotation practices on organic carbon (OC) sequestration in soil to depths well beyond the maximum depth of tillage operations while also studying carbon dioxide (CO2) emissions from the soil surface of those same experiments. This study was conducted from 2003 to 2005 on tillage and rotation experiments initiated 30 yrs ago in West-Central Indiana on a dark prairie soil with silty clay loam texture.. Our objectives were to determine how tillage systems such as moldboard plow (MP), chisel (CP), and no-till affected OC retention and surface soil CO2 emissions. These tillage systems were investigated in continuous corn and corn-soybean rotations. Soil OC distribution was determined from soil cores in multiple increments to a 1.0 m depth in late 2003 and early 2004. Gas fluxes from the soil surface were measured at weekly or biweekly intervals for up to 14 weeks in the corn growing seasons of 2004 and 2005. The increase in soil OC with no-till relative to moldboard plow averaged just 8 t/ha (or 5% on an equivalent mass basis) in both rotations. Rotation systems had little impact on OC; continuous corn was not superior to the soybean-corn rotation in either no-till or moldboard plow systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC, relative to no-till, in the 30-50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Growing season CO2 emissions were significantly affected by rotation but not by tillage treatments. . CO2 emission was higher under continuous corn than with corn following soybean. Our results suggest that conclusions about soil OC gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken much deeper than the deepest depth of direct soil disturbance by tillage implements. After 3 decades of consistent tillage and crop rotation management, tillage system impacts on overall soil OC retention and seasonal CO2 emissions were less than expected. Continuous corn did not store more soil OC than rotation corn, perhaps because continuous corn emitted more CO2 from the soil surface than corn- soybean rotation systems.
  • Authors:
    • Lal, R.
    • Jarecki, M. K.
  • Source: Soil Science
  • Volume: 171
  • Issue: 3
  • Year: 2006
  • Summary: Accelerating soil erosion, leading to loss of the surface soil, is a common occurrence in croplands on undulating terrain. Yet the impact of erosion and reclamation measure on emission of greenhouse gases (GHG) is not known. Three predominant GHG emitted from cropland are as follows: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The most abundant GHG is CO2, but N2O and CH4 are also important, with global warming potentials (GWP) of 297 and 23, respectively. The objectives of this study were to evaluate the effect of imitated soil erosion on gaseous emission, to determine the effects of application of wheat (Triticum aestivum) residue mulch and swine manure and soybean (Glycine max) residue compost as soil-restorative measures on fluxes of CO2, N2O, and CH4 from uncropped, undisturbed, and desurfaced plots, and to determine relations between GHG fluxes and air and soil temperature, precipitation, and soil-moisture regimes. The microplot (2 X 2 m) experiment was established in 2002 on a Crosby silt loam (fine mixed Aeric Ochraqudalf ) near South Charleston, Ohio. The experimental design included two soils: undisturbed and desurfaced soil in which the top 0-cm to 20-cm layer was mechanically removed to simulate severe soil erosion. There were three cover treatments: bare soil, wheat mulch at the rate of 8 Mg dry matter ha-1 y-1, and compost made from swine manure and soybean residues at the rate of 20 Mg dry matter ha-1 y-1. All plots received mineral fertilizer at the rate of 100 kg N ha-1. Desurfacing decreased soil moisture, increased temperature, decreased daily and annual CO2 fluxes (1.05 vs. 1.59 g CO2-C m-2 d-1), and increased N2O fluxes (3.58 vs. 1.81 mg N2O-N m-2 d-1). Daily CO2 and annual fluxes were higher from compost than mulch plots. The lowest daily CO2 flux was measured from bare plots. The daily N2O fluxes significantly increased after compost application but were more significantly affected by rainfall events. CH4 fluxes were characterized by a high variability; however, more uptake was observed in compost (-0.41 kg ha-1 y-1) than in mulch (0.60 kg ha-1 y-1) and bare plots (2.75 kg ha-1 y-1). Daily CO2 fluxes were positively correlated with soil (r = 0.82) and air temperatures (r = 0.84) and negatively correlated with soil-moisture content (r = -0.53). Daily N2O fluxes were highly correlated with precipitation (r = 0.88). Fluxes of CO2 and N2O were mutually correlated (r = 0.56), but CH4 fluxes were not correlated with temperature, moisture, precipitation, or fluxes of other GHG. Computed GWP was higher in compost-covered plots than in mulched and bare plots. Estimation of fluxes of GHG indicates that N2O accounts for 13% to 28% and CH4 for -0.5% to 5% of the total emission. Therefore, a completed assessment of flux of GHG must be based on measurement of all three gases (i.e., CO2, N2O, and CH4).
  • Authors:
    • Jung, Y. S.
    • Meek, D. W.
    • Cambardella, C. A.
    • Jaynes, D. B.
    • Parkin, T. B.
    • Kaspar, T. C.
  • Source: Soil Science Society of America Journal
  • Volume: 70
  • Issue: 4
  • Year: 2006
  • Summary: Winter cover crops have the potential to increase soil organic C in the corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation in the upper Midwest. Management effects on soil C, however, are often difficult to measure because of the spatial variation of soil C across the landscape. The objective of this study was to determine the effect of oat (Avena sativa L.), rye (Secale cereale L.), and a mixture of oat and rye used as winter cover crops following soybean on soil C levels over 3 yr and both phases of a corn-soybean rotation using terrain attributes as covariates to account for the spatial variability in soil C. A field experiment was initiated in 1996 with cover crop treatments, both phases of a corn-soybean rotation, and a controlled-traffic no-till system. Oat, rye, and oat-rye mixture cover crop treatments were overseeded into the soybean phase of the rotation in late August each year. Cover crop treatments were not planted into or after the corn phase of the rotation. Soil C concentration was measured on 450 samples taken across both rotation phases in a 7.62-m grid pattern in the late spring of 2000, 2001, and 2002. Slope, relative elevation, and wetness index (WI) were used as covariates in the analysis of variance to remove 77% of the variation of soil C caused by landscape driven patterns of soil C. Soil C concentrations were 0.0023 g C g soil -1 higher in 2001 and 0.0016 g C g soil-1 higher in 2002 than in 2000. The main effects of cover crops were not significant, but the interaction of cover crops and rotation phase was significant. The rye cover crop treatment had 0.0010 g C g soil-1 higher soil C concentration than the no-cover- crop control in the soybean phase of the rotation, which included cover crops, but had 0.0016 g C g soil -1 lower C concentrations than the control in the corn phase of the rotation, which did not have cover crops. Using terrain covariates allowed us to remove most of the spatial variability of soil C, but oat and rye cover crops planted every other year after soybean did not increase soil C concentrations averaged over years and rotation phases.
  • Authors:
    • Bullock, D. G.
    • Hao, X.
    • Robertson, G. P.
    • Kravchenko, A. N.
  • Source: Agronomy Journal
  • Volume: 98
  • Issue: 6
  • Year: 2006
  • Summary: Lack of information about the spatial variability of soil C in different management systems limits accurate extrapolation of C sequestration findings to large scales. The objectives of this study were to: (i) describe and quantify variability of total C in three management systems, chisel-plow (CT) and no-till (NT) with conventional chemical inputs and a chisel-plow organic management practice with cover crops (CT-cover) 15 yr after conversion from conventional management; (ii) assess the strengths of spatial correlation in the three studied systems; and (iii) evaluate contributions of topography and texture to the overall total C variability and its spatial components. The data were collected at 12 60 by 60 m plots at the Long Term Ecological Research site, Kellogg Biological Station, MI. The data consisted of elevation measurements taken on a 2 by 5 m grid and a total of 1160 measurements of total C, sand, silt, and clay contents taken from the 0- to 5-cm depth. Overall variability of total C in NT was more than four times greater than in CT, and in CT-cover the variability was more than two times greater than CT. Spatial correlation of total C was the strongest in NT, followed by CT-cover, and then by CT. Stronger spatial structures in NT and CT-cover were found to form in response to topographical and texture gradients. Effects of texture were largely associated with topographical effects; however, even when topography was controlled for, texture still substantially contributed to explaining total C variability.
  • Authors:
    • Wander, M.
    • Marriott, E. E.
  • Source: Soil Biology and Biochemistry
  • Volume: 38
  • Issue: 7
  • Year: 2006
  • Authors:
    • Liu, X. J.
    • Reule, C. A.
    • Halvorson, A. D.
    • Mosier, A. R.
  • Source: Journal of Environmental Quality
  • Volume: 35
  • Issue: 4
  • Year: 2006
  • Summary: The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha-1. Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.
  • Authors:
    • Baker, J. M.
    • Molina, J. A. E.
    • Allmaras, R. R.
    • Clapp, C. E.
    • Dolan, M. S.
  • Source: Soil & Tillage Research
  • Volume: 89
  • Issue: 2
  • Year: 2006
  • Summary: Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0-20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20-25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha-1, respectively) than with NT (13 and 1.2 Mg SOC and N ha-1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.