- Authors:
- Osborne, S. L.
- Riedell, W. E.
- Pikul, J. L. Jr.
- Source: Recent Research Developments in Soil Science
- Volume: 2
- Year: 2007
- Summary: Maize (Zea mays L.) grown in rotation with high residue crops generally has lower grain yield under no-till than under tilled soil management in the northern US maize belt. Hence, the research objectives were to further characterize soil physical properties, maize grain yield, and seed composition under tilled and no-till soil management following soybean ( Glycine max L.) or winter wheat ( Triticum aestivum L). The two year field study was conducted on a Barnes sandy clay loam soil (fine-loamy, mixed, superactive, frigid Calcic Hapludoll) in eastern South Dakota USA. Research plots were managed under no-till starting in 1996. Tillage treatments (fall chisel plow prior to winter wheat, fall chisel plow plus spring disk-harrow prior to maize and soybean, or no-till) were started in 2001. Tillage and previous crop treatments were arranged in a completely randomized block design with 4 replications. Soil temperatures (30 cm depth) in tilled plots after winter wheat were warmer than no-till plots in June and again in August of the 2004 growing season. In 2003, soil temperatures were very similar across tillage treatments. Soil bulk density (0 to 10 cm depth) and soil penetration resistance (0 to 7 cm depth) were much greater under no-till soil management than under tilled conditions when measured in mid-June (V6 leaf development stage). While tillage treatment affected maize seed oil concentration (4.0% in tilled, 4.3% in no-till), there were no significant previous crop or interaction effects on seed oil or protein concentration. In the warmer and drier year (2003), maize grain yield under tilled conditions was 8.2 Mg ha -1 compared with 8.7 Mg ha -1 under no-till. In the cooler and wetter year (2004), yields were 9.4 Mg ha -1 under tilled soil management and 7.4 Mg ha -1 under no-till. The no-till soil management treatment following winter wheat had 27% lower maize grain yield than the tilled treatments and the no-till following soybeans. We conclude that greater bulk density and penetration resistance levels under no-till soil management, along with cool soil conditions that typically occur in the spring in the northern US maize belt, reduced maize yield under no-till management in soils with moderately low to low internal drainage.
- Authors:
- Source: Indian Journal of Agricultural Research
- Volume: 41
- Issue: 4
- Year: 2007
- Summary: Effect of irrigated and rainfed cropping systems on carbon and nitrogen mineralization was studied. Maximum C and N mineralization observed under irrigated cropping systems than rainfed. Sorghum-chickpea-groundnut showed highest mineralization under irrigated condition. While monocropping and intercropping with legumes enhances the rate of mineralization under rainfed situation. Mineralization was found to be highest during grand growth period of crops. Application of integrated nutrient supply increased C and N mineralization as compared to their individual application. The FYM+wheat straw+green manuring application augmented the mineralization under soybean-wheat crop sequence.
- Authors:
- Schumacher, K. D.
- Striewe, L.
- Source: Agrarwirtschaft
- Volume: 56
- Issue: 1
- Year: 2007
- Summary: The international cereal production is expected to decrease by 1% in 2006/07, the second year in a row. Wheat production is expected 589 million tonnes, 5% less the previous year and the lowest harvest for the last three years. Droughts in Australia, the USA and Canada are one reason, however China, Ukraine and other Black Sea neighbouring countries reported higher production in 2006/07. In the USA 110 ethanol production units were established, most are maize (corn) based others on sorghum. A doubling of the capacity in 2007 alone is projected. The EU cereal harvest was also reduced with droughts in Spain and Portugal. Prices are predicted to rise further, the export licences established in the Ukraine have driven European prices up and Ukrainian producers suffered because of price drops within their country, due to oversupply. The global oilseed production can currently match demand, however, it is expected that demand will grow faster than supply. The global oilseed production in 2006/07 of 395 million tonnes consisted mainly of soyabeans (227), oilseed rape (47), cotton (44), peanuts (32) and sunflowers (31 million tonnes). The soyabean area in Brazil is decreasing from 23 million ha to 21 million in 2006/07, however Argentina has increased the area by 0.5 to 15.7 million ha. Globally demand is again rising faster than supply and inelastic demand caused by government subsidies for bio-fuel will lead to less cereals being available for food consumption.
- Authors:
- Kumar, S.
- Bishnoi, U. R.
- Cebert, E.
- Source: American-Eurasian Journal of Sustainable Agriculture
- Volume: 1
- Issue: 1
- Year: 2007
- Summary: In southeastern USA, winter wheat as a double crop has proved to be economically profitable and beneficial for soil management to the farmers. Winter rape ( Brassica napus) also has similar potential but its suitability as a double crop and in rotation with summer crops has not been evaluated. Therefore, performance of winter rape in rotation and as a double crop with soyabean, maize, sorghum, and cotton were evaluated for two years. Results showed that the effect of rotation on plant density during both years was significant. Rotational effects on number of pods per plant were non-significant than rape grown as fallow in 2003 but not in 2004. Rape grown after soyabean produced significantly higher seed yield in 2003 (2739 kg ha -1) and 2004 (3129 kg ha -1) than after other crops except maize (2938 kg ha -1) and fallow (2876 kg ha -1). Planting rape after fallow gave significantly the lowest economic returns during both years. Rape gave significantly higher economic returns when planted after maize ($1237) and cotton ($1169) than soyabean-rape and sorghum-rape and fallow-rape rotations in 2003. Similarly, cotton-rape ($1442) and soyabean-rape ($1393) gave significantly higher economic returns per hectare than maize-rape, sorghum-rape, and fallow-rape cropping systems.
- Authors:
- Tiwary ,P.
- Manual, D. K.
- Prasad, J.
- Hajare, T. N.
- Challa, O.
- Source: Agropedology
- Volume: 17
- Issue: 1
- Year: 2007
- Summary: An experiment was conducted to compare the production potential and economic feasibility of various crop combinations, i.e. cotton (cv. Anjali 561) intercropped with cowpea, urd bean and dhaincha, and soyabean (cv. JS 335) intercropped with maize, sorghum and pigeon pea, under rainfed farming conditions in Nagpur, Maharashtra, India, during 2002-04. The soils of the area are 22-24 cm deep (underlain by murrum/saprolite up to 40-45 cm), well-drained (Lithic Ustorthents) and occur on 1-3 and 3-5% slope. Cotton intercropping comprised row to row at 90 cm and plant to plant at 45 cm, while soyabean intercropping comprised 2 rows of main and 2 rows of intercrop at 45 cm. Irrespective of the slope, the highest yield of cotton was recorded under cotton + cowpea cropping system; however, the highest net return was observed under cotton + cowpea cropping system. For soyabeans, the highest yield was recorded under sole soyabean crop in both soil slopes. Among the intercropping systems, soyabean + pigeon pea had the highest yield followed by sorghum under both slopes during 2002-03. In 2003-04, soyabean + sorghum gave the highest soyabean equivalent yield in both soils followed by soyabean + pigeon pea. Comparative data on gross return, net return, average net profit and land equivalent ratio for both cotton and soyabean cropping systems are also presented.
- Authors:
- Source: Egyptian Journal of Plant Breeding
- Volume: 11
- Issue: 1
- Year: 2007
- Summary: These proceedings contain 30 papers on the various aspects of plant breeding including heterosis, combining ability and inheritance studies, characterization of cultivars, performance evaluation and genetic improvement of field crops (including wheat, cotton, soyabean, maize, rice, barley, rape, sorghum and faba bean) and horticultural crops (e.g. mango, tomato, pepper and grape).
- Authors:
- Source: Weed Technology
- Volume: 21
- Issue: 2
- Year: 2007
- Summary: Weed management is evolving to include cultural tactics that reduce weed populations. This study near Brookings, SD, evaluated the effect of crop sequence and tillage on seedling emergence of common sunflower across years. In the third and fourth years of the study, seedling density was sevenfold greater after 2 yr of soyabean with tillage compared with a 2-yr sequence of canola and winter wheat with no-till. Apparently, canola and winter wheat enhanced the natural decline of common sunflower seed density in soil, leading to fewer seedlings in following years. In the first year of the study, tillage increased seedling emergence of common sunflower compared with no-till; seedlings rarely emerged in canola or winter wheat. Most seedlings of common sunflower emerged in May, with more than 90% of seedlings emerging between May 7 and June 4. Cool-season crops grown with no-till may affect weed seed survival in soil in the western Corn Belt.
- Authors:
- Anderson, R. L.
- Beck, D. L.
- Source: Weed Technology
- Volume: 21
- Issue: 1
- Year: 2007
- Summary: Producers in the Great Plains are exploring alternative crop rotations with the goal of reducing the use of fallow. In 1990, a study was established with no-till practices to compare 8 rotations comprising various combinations of winter wheat (W), spring wheat (SW), maize (C), chickpea (CP), dry pea (Pea), soyabean (SB), or fallow (F). After 12 years, we characterized weed communities by recording seedling emergence in each rotation. Downy brome ( Bromus tectorum), cheat ( Bromus secalinus), redroot pigweed ( Amaranthus retroflexus), and green foxtail ( Setaria viridis) were the most common weeds observed. Weed community density was highest for W-CP, being 13-fold greater than with Pea-W-C-SB. Downy brome and cheat were rarely observed in rotations where winter wheat was grown only once every 3 or 4 years; in contrast, density of the brome species was 75-fold greater in W-CP. Warm-season weeds were also affected by rotation design; density of redroot pigweed and green foxtail was 6-fold greater in W-C-CP compared with Pea-W-C-SB or W-F. One rotation design that was especially favourable for low weed density was arranging crops in a cycle of 4, with 2 cool-season crops followed by 2 warm-season crops.
- Authors:
- Source: Agricultural insect pests and their control
- Year: 2007
- Summary: This book, which contains 24 chapters, covers the morphology (integument, head, thorax and abdomen), physiology (digestive system, circulatory system, excretory system, respiratory system, nervous system, photoreceptors, endocrine system, and reproductive system), development and metamorphosis, and control (through physical, mechanical, biological, chemical and integrated management strategies, and through quarantine and the use of pheromones) of agricultural insect pests. An overview of the life history and control of pests of cotton and fibre crops, sugarcane, oilseed crops, pulse crops, sorghum, cereals, fruits and fruit trees, vegetables, plantation crops, soyabean, ornamental plants, and stored grains is provided. This book is intended for students of agricultural entomology in India, but will also be useful for those who are preparing for examinations for admission in government agencies.
- Authors:
- Duarte, G.
- Diaz-Zorita, M.
- Barraco, M.
- Source: Wheat Production in Stressed Environments
Developments in Plant Breeding
- Volume: 12
- Year: 2007
- Summary: Wheat ( Triticum aestivum L.) grain yields under no-till production systems have been shown to be reduced in the presence of maize ( Zea mays L.) residues. It has been suggested that sowing a greater density of wheat seeds or removing maize residues from the planting rows contributes to avoid this problem. However, the causal factors and the mechanism that produce reductions in wheat yields are no clearly defined. Our objective was to determine the effects of different volumes of maize or soybean [ Glycine max (L.) Merrill] residues on no-tillage wheat establishment and production under field conditions on a Typic Hapludoll from the Pampas region of Argentina. The study was performed during the 2002, the 2003 and the 2004 growing seasons. Two treatments [residue volume (0, 4, 8 and 16 Mg ha -1) and crop residue (maize and soybean)] were imposed after sowing wheat at low and high plant densities, (301 and 396 seed ha -1, respectively). The previous crop was sunflower ( Helianthus annus L.) and the residues were applied on the soil surface immediately after planting and fertilizing with 125 kg ha -1 of Nitrogen. Independently of the quality of the residues and the sowing density, wheat plants m -2, spikes m -2 and grain yields ha -1 decreased when residue volume increased. In general, lower soil temperatures values and variability were observed when increasing the volume of residues. The presence of large amounts of maize or soybean residues causes the reduction in no-tillage wheat productivity (plant stand and numbers of spikes). However, only maize residues causes significant reductions in grain yields, independently of the seeding rate. The absence of significant differences in soil temperature measurements between residues allows us to think that the effects on surface soil temperature are not the main factor explaining the reduction in wheat grain yields in the presence of maize residues. Increasing the seeding rate can contribute to ameliorate the grain yield reduction in the presence of maize residues but further research is required for explaining the reasons for the behavior of the crop.