• Authors:
    • Samuel, A.
    • Domuta, C.
    • Sandor, M.
    • Vuscan, A.
    • Brejea, R.
  • Source: Romanian Agricultural Research
  • Issue: 28
  • Year: 2011
  • Summary: Long-term field trials can provide important information about the effects of soil management practices on soil properties but there are relatively few such trials available. The Agricultural Research and Development Station in Oradea (Bihor county) provided opportunity to study the effects of 18 years of cultivation on preluvosoil. The objective of the reported work was to determine at this site the effects of soil management practices on phosphatase activities as an index of soil biology. Phosphatase (phosphomonoesterase) activities were determined for two years, from 2008 to 2009, in the 0-20, 20-40 and 40-60 cm layers of a preluvosoil, from a long term trials with various tillage practices (no-till and conventional tillage), crop rotation (2 and 6 crop rotations) and fertilization [mineral (NP) fertilization and farmyard-manuring] experiment. The determined activities decreased with increasing sampling depth. No-till - in comparison with conventional tillage - resulted in significantly higher soil phosphatase activities in the 0-20 and in significantly lower activities in the deeper layers. The soil under maize or wheat was more enzyme-active in the 6 than in the 2 crop rotation. In the 2 crop rotation, higher phosphatase activities were recorded under wheat than under maize. Farmyard-manuring of maize - in comparison with mineral (NP) fertilization - led to a significant increase in enzyme activities. Maintenance of enzyme activities over tens of years in agricultural soils is partly attributed to traditional management practices including rotations with legumes, additions of animal manures, and minimum tillage.
  • Authors:
    • Sarker, S. C.
    • Patra, P. S.
    • Mula, G.
    • Paramanik, B.
  • Source: Journal of Crop and Weed
  • Volume: 7
  • Issue: 1
  • Year: 2011
  • Summary: Zero tillage saves tillage and irrigation costs, results in yield gains through a possible improvement in sowing time and enhanced fertilizer and water use efficiencies. The present study was conducted to explore the possibilities of saving critical inputs and to enhance the profit margin of the rural farmers of Uttar Dinajpur, Dakshin Dinajpur, Malda and Murshidabad districts of West Bengal through National Agricultural Innovation Project. Mean grain yield of 10 villages showed that zero tillage practices produced 8.004% more grain yield than conventional tillage method. On an average zero tillage method save total cost of Rs. 4449.67 ha -1 and increase profit margin of Rs. 7056.25 ha -1. Zero till field also recorded higher B:C ratio of 0.923 as compared to conventional tillage method (0.432).
  • Authors:
    • Jones, B. P.
    • Sequeira, C. H.
    • Alley, M. M.
  • Source: Soil Biology and Biochemistry
  • Volume: 43
  • Issue: 2
  • Year: 2011
  • Summary: Particulate organic matter (POM) and light fraction (LF) organic matter are potentially labile (active) fractions of soil organic matter (SOM) that have been shown to be indicators of short-term changes in soil management practices (e.g. tillage, manure and fertilizer applications, and crop rotation). These two fractions consist mainly of partially decomposed plant residues, microbial residues, seeds, and spores forming organo-mineral complexes with soil mineral particles; however, they cannot be used as synonyms because of their different chemical composition and structure. Particulate-OM is recovered by size-based procedures while LF is generally recovered in two distinct fractions [free-LF (FLF) and occluded-LF (OLF)] using density-based solutions in conjunction with soil-aggregate disruption. Solutions used in these density-based separations have most commonly varied in density from 1.6 to 2.0 g cm -3. Sodium iodide (NaI) and sodium polytungstate (SPT) are the chemicals most often used to prepare the density solutions in LF recovery but comparisons of the effectiveness of two solutions have not been conducted. The objectives of this research were: (1) compare the efficiency of similar density solutions of NaI and SPT in recovering FLF; and (2) compare POM, FLF, and OLF as possible sensitive indices of short-term soil changes due to tillage management. Soil samples were collected at 0-15 cm depth from a cropping system experiment conducted on a silt loam Ultisol. Plots selected for sampling had received either reduced till (RT) or no-till (NT), and cropping was continuous corn silage for a period of 3 years prior to sampling. Solutions of NaI and SPT at densities of 1.6 and 1.8 g cm -3 were used to recover FLF, and OLF was recovered with SPT solution at a density of 2.0 g cm -3 from the soil pellet remaining after FLF recovery with SPT 1.6 g cm -3. The average total soil organic carbon (SOC) content of these samples was of 12.7 g kg -1, and carbon-POM (C-POM), carbon-FLF (C-FLF), and carbon-OLF (C-OLF) represented 22.4, 5.5, and 5.2% of it, respectively. In general, C-FLF and nitrogen-FLF (N-FLF) contents recovered did not differ significantly between chemical solutions (NaI or SPT) adjusted to the same density (1.6 or 1.8 g cm -3). Increasing the density within a specific solution (NaI or SPT) resulted in significantly higher C-FLF and N-FLF recovery. For instance, C-FLF recovery averaged 637 and 954 mg kg -1 at 1.6 and 1.8 g cm -3, respectively. For both chemicals increasing density from 1.6 to 1.8 g cm -3 reduced the variability in recovering C-FLF and N-FLF with coefficient of variation values decreasing from a range of 14.9-19.1% for densities of 1.6 g cm -3 to 6.7-10.4% when densities increased to 1.8 g cm -3. In the present work, POM and OLF were more sensitive than FLF to changes in tillage management, with significantly greater amounts of the sensitive fractions in RT samples. A better sensitivity of FLF would be expected if treatments dealing with residue input (e.g. crop rotation and cover crop) were evaluated.
  • Authors:
    • Sequeira, C. H.
    • Alley, M. M.
  • Source: Soil Science Society of America Journal
  • Volume: 75
  • Issue: 5
  • Year: 2011
  • Summary: Soil organic matter (SOM) is commonly used as an indicator of soil quality, with different fractions being used as indices to measure changes in SOM caused by management. The objective of this study was to compare whether selected SOM fractions exhibited sensitivity to short-term changes in management. The experiment was conducted for similar to 3 yr as a split-split-plot design with crop rotation as the whole-plot treatment factor, tillage as the subplot treatment factor, and cover crop management as the sub-subplot treatment factor. Soil samples were collected at the 0- to 15-cm depth. Soil organic C (SOC) and N, particulate organic matter (POM), free light fraction (FLF), Illinois soil N test (ISNT), and easily oxidizable C (EOC) were tested as possible sensitive indices to changes in management. The stable fraction SOC was only affected by cover crop management, while C and N contents and C/N ratio of the labile POM and FLF fractions were affected by additional management practices. Between POM and FLF, the latter was the most sensitive, with cover crop management having the greatest effect. Because FLF is chemically and structurally closer to plant residues than POM, the sensitivity rank position of these fractions would probably be at least more similar if only tillage management was considered. In addition, the lack of sensitivity of ISNT and EOC to any tested management practice is added to previous studies that have raised questions of the representation of the labile SOM pool through these fractions.
  • Authors:
    • Shipitalo, M. J.
    • Owens, L. B.
  • Source: Journal of Environmental Quality
  • Volume: 40
  • Issue: 4
  • Year: 2011
  • Summary: Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( Triticum aestivum L.- Trifolium pratense L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( P≤0.05) than the losses of atrazine (21.4*), alachlor (3.5*), and linuron (8.7*) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 g L -1, much greater than its 3 g L -1 MCL. Likewise, annual, flow-weighted alachlor concentration (MCL=2 g L -1) was as high as 11.2 and 4.9 g L -1 in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 g L -1 MCL and the highest, annual, flow-weighted concentration was 3.9 g L -1. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.
  • Authors:
    • Macák, M.
    • Demjanová, E.
    • Smatanová, N.
    • Smatana, J.
  • Source: Research Journal of Agricultural Science
  • Volume: 43
  • Issue: 3
  • Year: 2011
  • Summary: The field experiments was carried out over the period of 2004-2007 at the experimental farm Kalna nad Hronom in south-western Slovakia. The aim of the research was to evaluate the influence of conventional and reduced tillage and management of organic matter on the soil physical characteristics. The sugar beet - spring barley - sunflower - winter wheat crop sequence was evaluated. The soil tillage treatments as follows: T1 - conventional mould board ploughing with farm yard manure application to sugar beet and incorporation of post harvested residues of spring barley and sunflower; T2 - convnentional mould board ploughing; T3 - no-till Horsch CONCORD CO 9. During June soil samples were taken from 0.05-0.10 m, 0.10-0.20 m, 0.20-0.30 m. Total porosity, soil bulk density and soil moisture was evaluated. The differences between soil layer and crops growing in different years were ascertained. Evaluated tillage treatments have no statistical influence on total porosity and soil bulk density in an average of four years. No till treatment (T3) influenced the less infiltration rate of soil profile with comparison to mouldboard ploughing treatments. The soil bulk density was highly significantly influenced by weather condition, growing crops and residue management and significantly influenced by soil layer. The positive effect of FYM on total porosity was evaluated in 2004 during sugar beet phase of rotation in first and second soil layers 0.05-0.10 m (T1 47.47%) and 0.10-0.20 m (46.93%) which is in relationship with soil bulk density 1.266 t.m 3 and 1.279 t.m 3 in topsoil layers 0.5-0.20 m. Soil bulk density range from 1.361-1.52 t.m 3, in an average. Average data of total porosity revealed the significant less total porosity in deeper soil layer 0.2-0.3 m (41.65%) with comparison to top layer 0.05-0.10 m (44.5%). Significantly less total porosity was created under canopy of sunflower (39.9%) with comparison to sugar beet (43.3%), spring barley (43.8%) and winter wheat (45.1%). In four year average results, the conventional mould board ploughing with farm yard manure form the most suitable soil environment (soil bulk density, total porosity and soil humidity retention), but we also recommended no-till for this specific area of Slovak region.
  • Authors:
    • Carvalho, D.
    • Pereira, J.
    • Silva, L.
    • Guerra, J.
    • Souza, A.
  • Source: ACTA SCIENTIARUM-AGRONOMY
  • Volume: 33
  • Issue: 1
  • Year: 2011
  • Summary: The objective of this study was to determine the crop evapotranspiration (ETc), crop coefficients (kc) and water-use efficiency (EUA) of the bell pepper crop in the no till system (PD) and conventional tillage system (PC), in the Fluminense Valley, Rio de Janeiro State, Brazil. The irrigation was managed and the evapotranspiration demand quantified by calculating the daily soil water balance using the TDR technique and data collected in an automatic meteorological station. It was verified that the accumulated ETc at 181 days after planting (DAT) was 363 and 335 mm for PD and PC, respectively. The kcs obtained were 0.32, 1.18 and 0.77 and 0.34, 1.05 and 0.86, for the PD and PC systems, respectively, in the initial (0-40 DAP), middle (81-120 DAP) and final (181 DAP) growth phases, respectively. The kc values for the bell pepper crop presented by FAO were similar to the values found for the PC, but are not recommended for PD. Considering the total depth applied (rain and irrigation), the average values of water use efficiency were 3.9 and 4.5 kg m -3 for PD and PC, respectively.
  • Authors:
    • Maul, J. E.
    • Meisinger, J. J.
    • Cavigelli, M. A.
    • Spargo, J. T.
    • Mirsky, S. B.
  • Source: Nutrient Cycling in Agroecosystems
  • Volume: 90
  • Issue: 2
  • Year: 2011
  • Summary: Sustainable soil fertility management depends on long-term integrated strategies that build and maintain soil organic matter and mineralizable soil N levels. These strategies increase the portion of crop N needs met by soil N and reduce dependence on external N inputs required for crop production. To better understand the impact of management on soil N dynamics, we conducted field and laboratory research on five diverse management systems at a long-term study in Maryland, the USDA- Agricultural Research Service Beltsville Farming Systems Project (FSP). The FSP is comprised of a conventional no-till corn ( Zea mays L.)-soybean ( Glycine max L.)-wheat ( Triticum aestivum L.)/double-crop soybean rotation (NT), a conventional chisel-till corn-soybean-wheat/soybean rotation (CT), a 2 year organic corn-soybean rotation (Org2), a 3 year organic corn-soybean-wheat rotation (Org3), and a 6 year organic corn-soybean-wheat-alfalfa ( Medicago sativa L.) (3 years) rotation (Org6). We found that total potentially mineralizable N in organic systems (average 315 kg N ha -1) was significantly greater than the conventional systems (average 235 kg N ha -1). Particulate organic matter (POM)-C and -N also tended to be greater in organic than conventional cropping systems. Average corn yield and N uptake from unamended (minus N) field microplots were 40 and 48%, respectively, greater in organic than conventional grain cropping systems. Among the three organic systems, all measures of N availability tended to increase with increasing frequency of manure application and crop rotation length (Org2 < Org3 ≤ Org6) while most measures were similar between NT and CT. Our results demonstrate that organic soil fertility management increases soil N availability by increasing labile soil organic matter. Relatively high levels of mineralizable soil N must be considered when developing soil fertility management plans for organic systems.
  • Authors:
    • Stavi,I.
    • Lal,R.
    • Owens,L. B.
  • Source: Agronomy for Sustainable Development
  • Volume: 31
  • Issue: 3
  • Year: 2011
  • Summary: Contrary to earlier studies, this study suggests that even one year of tillage within a long-term no-till agroecosystem adversely affected the soil quality, with possible negative impact on crop yields. Worldwide interest in conservation tillage is increasing, because conventional tillage adversely impacts the long-term quality of the soil and its vulnerability to erosion. No-till agriculture minimizes adverse impacts of an intensive arable land use. In some cases, occasional tillage is used as a means of weed or pathogen control. Therefore, this study was conducted in eastern Ohio to examine soil quality as affected by occasional tillage, i.e. disk plowed every 3-4 years, within a long-term no-till agroecosystem. The study compared the soil characteristics between two fields, both under corn ( Zea mays L.) at the time of the study. Soil properties were studied for three depths of 0-6, 6-12, and 12-18 cm. Compared with the continuous no-till field, the field under occasional tillage had significantly higher bulk density of 1.45 versus 1.31 gcm -3, and somewhat higher soil penetration resistance of 1.77 versus 1.56 MPa. Also, compared with the no-till field, the field under occasional tillage had significantly lower water stable aggregate of 475 versus 834 gkg -1, mean weight diameter of 1.4 versus 3.4 mm, field moisture capacity of 293 versus 360 gkg -1, equilibrium infiltration rate of 2.0 versus 6.7 mm min -1, and cumulative infiltration of 353.4 versus 1,211.8 mm. The field under occasional tillage had somewhat lower soil organic carbon of 16.0 versus 19.2 gkg -1, soil water sorptivity of 16.3 versus 36.5 mm min -0.5, and transmissivity of 2.1 versus 4.9 mm min -1. The occasional tillage had no effect on the soil shear strength. In general, the effect of tillage on soil properties decreased with increase in soil depth. Also corn yields were compared between the two agroecosystems. Compared with the no-till field, the field under occasional tillage had significantly lower grain moisture content of 22.4 versus 28.2%, and somewhat lower wet stover biomass of 14.6 versus 20.2 Mg ha -1, wet corn ear yield of 10.0 versus 11.4 Mg ha -1, and dry grain yield of 8.2 versus 9.4 Mg ha -1. As contrasted with earlier studies which were conducted under controlled research plots, this study was conducted under on-farm conditions.
  • Authors:
    • Kravchenko, A. N.
    • Mokma, D. L.
    • Corbin, A. T.
    • Syswerda, S. P.
    • Robertson, G. P.
  • Source: Soil Science Society of America Journal
  • Volume: 75
  • Issue: 1
  • Year: 2011
  • Summary: Soil C sequestration research has historically focused on the top 0 to 30 cm of the soil profile, ignoring deeper portions that might also respond to management. In this study we sampled soils along a 10-treatment management intensity gradient to a 1-m depth to test the hypothesis that C gains in surface soils are offset by losses lower in the profile. Treatments included four annual cropping systems in a corn ( Zea mays)-soybean ( Glycine max)-wheat ( Triticum aestivum) rotation, perennial alfalfa ( Medicago sativa) and poplar ( Populus * euramericana), and four unmanaged successional systems. The annual grain systems included conventionally tilled, no-tillage, reduced-input, and organic systems. Unmanaged treatments included a 12-yr-old early successional community, two 50-yr-old mid-successional communities, and a mature forest never cleared for agriculture. All treatments were replicated three to six times and all cropping systems were 12 yr post-establishment when sampled. Surface soil C concentrations and total C pools were significantly greater under no-till, organic, early successional, never-tilled mid-successional, and deciduous forest systems than in the conventionally managed cropping system ( p≤0.05, n=3-6 replicate sites). We found no consistent differences in soil C at depth, despite intensive sampling (30-60 deep soil cores per treatment). Carbon concentrations in the B/Bt and Bt2/C horizons were lower and two and three times more variable, respectively, than in surface soils. We found no evidence for C gains in the surface soils of no-till and other treatments to be either offset or magnified by carbon change at depth.